• Title/Summary/Keyword: measurement equipment

Search Result 1,716, Processing Time 0.034 seconds

An Analysis of Threat Factors for Strengthen Maritime Safety around Delphi/AHP-Based Launch Site and Flight Paths (Delphi/AHP 기반 발사장 주변 및 비행경로의 해상안전 강화를 위한 위협요인 분석)

  • Ahn-Tae Shin;Byung-Mun Park;Hun-Soo Byun
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.208-216
    • /
    • 2023
  • In this study, using the Delphi method, 20 responses to 4 questions (need for launch safety control, top-priority considerations for ensuring public safety during launch, necessary improvements for securing maritime safety, and maritime safety threat factors) regarding launch vehicles and public safety were obtained from experts, and their importance was evaluated to analyze the factors that threaten the reinforcement of maritime safety around launch sites and flight paths when launching. According to the results of an analytic hierarchy process (AHP) analysis, the consistency ratio of the four questions was 4.8%, which is lower than CR ≤ 0.1(10%), and the consistency percentage of the lower measurement indicators was 3.9~5.7%. The derived importance and priority of maritime safety threat factors during launching were in the following order: Substantial human and physical damage in case of launch accidents(0.36), Prepare legal bases (e.g., penalty details) regarding maritime control(0.32), Secure the safety of personnel, equipment, and facilities in danger zone(0.31), Unauthorized entry of vessels in maritime control zones and non-compliance to restrictions(0.30). This article can serve as a reference for strengthening maritime safety in areas around launch sites and flight paths.

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.25-36
    • /
    • 2008
  • The plane strain test can reproduce the real field condition and failure behavior precisely over other laboratory shear tests. Accordingly, this test has been utilized to investigate the shearing behaviors associated with overall failure behavior and local deformation of soils. However, most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment and also performing it. This restraint induces different results with real field because of shear stress on end plates. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. And the formation and development of shear band caused by the restrained effect of end plate and the deformation mechanism of sand under plane strain condition were examined.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.

The Impact of Exchange Rate Volatility on Korea's Exports of Machinery Intermediate Goods to East Asian Countries: Around the Global Financial Crisis (환율변동성이 동아시아 국가에 대한 한국의 기계류 중간재 수출에 미치는 영향: 글로벌 금융위기 전후를 중심으로)

  • Jung, Moon-Hyun
    • Korea Trade Review
    • /
    • v.43 no.3
    • /
    • pp.169-198
    • /
    • 2018
  • The purpose of this paper is to investigate the impact of exchange rate volatility on the export of Korean machinery intermediate goods to East Asian countries using the export demand model. In order to secure the validity of the estimation of the exchange rate volatility for the export of machinery intermediate goods, various methods of volatility measurement are used including the GARCH model, the moving average standard deviation and the 12-month fixed average standard deviation. The long-term relationship between variables was analyzed by applying the panel cointegration tests and DOLS & FMOLS panel estimations. Analysis results found that prior to the global financial crisis in 2008, the total exports of machinery and exchange rate volatility positively affect the exports of intermediate goods such as general machinery, electronic machinery and transportation equipment, but did not affect the exports of precision machinery intermediate goods. After the global financial crisis, however, exchange rate volatility negatively affected total exports and the exports of all machinery intermediate goods. When analyzing the period before and after the global financial crisis, it had a positive impact on exports of precision machinery intermediate goods and a negative effect on total exports and the exports of other machinery intermediate goods.

  • PDF

An Observation Study of the Relationship of between the Urban and Architectural Form and Microclimate (도시·건축형태와 미기후의 관계에 대한 관찰 연구)

  • Lee, Gunwon;Jeong, Yunnam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.109-119
    • /
    • 2018
  • This study investigates the effect of urban and architectural forms on the microclimate in urban areas. It applies urban and architectural elements such as urban form and tissue and building form and characteristics as the main influences on the microclimate within urban area. Among the 23 Automated Weather Stations (AWS) installed within Seoul city by the Korea Meteorological Administration, 6 sites were selected for the analysis, based on their different urban and architectural characteristics, and actual measurements were conducted in August 2017 using individual AWS equipment. Also, the measurements of microclimate and urban and architectural elements within a 500m radius of the AWS measurement points were collected and analyzed. The result of the analysis shows that the microclimate elements, such as wind speed, solar radiation, and temperature, were affected by the direction of the streets, the width, depth, and height of the buildings, the topographic elevation and direction and the traffic volume. This study is expected to contribute to mitigating urban heat island effect and setting the foundation for sustainable cities through development of urban management methods and techniques including the relationship between built environment elements and microclimate.

A Study on the Extremely Low Frequency Magnetic Fields Exposure Characteristics of Workers in LCD Manufacturing Process (LCD 제조공정 종사근로자의 극저주파자기장 노출특성 연구)

  • Kim, JoonBeom;Kang, Joon Hyuk;Chung, Eun-Kyo;Jung, Kihyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.10-20
    • /
    • 2022
  • Objectives: The aim of this study is to evaluate exposure levels of the extremely low frequency magnetic fields(ELF-MF) radiated from various electric facilities in Liquid Crystal Display(LCD) manufacturing processes. Methods: This study measured the exposure levels of personal and local ELF-MF for the electronic facilities installed in two LCD manufacturing companies. Samplers were installed around workers' waist during working hours to identify personal exposure levels, and direct reading equipment were located at 3 cm, 10 cm, and 30 cm away from the surface of the electronic facilities to measure local exposure levels. Average and maximum(ceiling) values were calculated for personal and local exposure levels. Results: Average and maximum of personal exposure levels for each worker were 0.56(mean) ± 0.02(SE) µT and 6.31 ± 0.75 µT, respectively. Statistical analyses of the study found that maximum of the personal exposure levels for engineers was significantly higher than that for operators since engineers spend more time near the electronic facilities for repairing. The range of maximum personal exposure levels was 0.50 ~ 43.50 µT and its highest level was equivalent to 4.35 % of ACGIH(American Conference of Governmental Industrial Hygienists) exposure limit value(1 mT). Maximum of local exposure levels was 8.18 ± 0.52 µT and the electronic facilities with higher exposure levels were roof rail and electric panel, which were not related to direct manufacturing. The range of maximum local exposure levels was 0.60 ~ 287.20 µT and its highest level was equivalent to 28.7 % of the ACGIH exposure limit value. Lastly, the local exposure levels significantly decreased as the measurement distance from the electronic facilities increased. Conclusions: Maximum of personal and local exposure levels did not exceed the exposure limit value of ACGIH. However, it is recommended to keep the workers as far as possible from the sources of ELF-MF.

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process (등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰)

  • Kwon, Youngcheul;Bae, Wooseok;Oh, Sewook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.201-207
    • /
    • 2006
  • Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.

Comparison of Instrument Characteristics on the Total Organic Carbon Analysis Method in Water Samples (수질분야 총유기탄소 분석방법에 따른 장비별 특성 비교)

  • Hye-Sung Kim;Eun-Tae Hwang;Chan-Geun Lee;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.353-362
    • /
    • 2023
  • TOC, which can measure more than 90% of organic substances, can be measured quickly and easily,replacing BOD and COD, which were indicators of organic pollutants. According to water quality pollution control standards, when measuring TOC, if the inorganic carbon ratio in the sample is over 50%, the NPOC (Non-Purgeable Organic Carbon) method should be used. If volatile organic compounds (VOCs) are present at a certain concentration, the TC-IC (subtracting inorganic carbon from total carbon) method should be used. To validate the limitations of these analytical conditions, experiments were conducted by varying the ratio of TOC to IC in purified water and measuring the concentration of TOC in test solutions. The results showed no significant difference between the TC-IC method and the NPOC method. When measuring samples with added VOC standard solutions, it was observed that the carbon loss due to purging was not significant when using the NPOC method. Therefore, it is concluded that the choice of analytical method does not lead to significant differences when VOCs are present in the sample. To account for potential variations in results based on water quality pollution control standards and regulations regarding the approval and testing of environmental measurement devices, a comparison of field sample concentration values was made using two widely used types of TOC analyzers in Korea. The results showed variations of 0.02 to 0.83 mg/L between methods depending on the manufacturer, highlighting the need for caution when selecting an instrument.

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers (하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구)

  • Yoon, Soo Bin;Lee, Chang Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.815-822
    • /
    • 2023
  • Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.

Tip and taper compatibility of accessory gutta-percha points with rotary and reciprocating instruments

  • Julia Niero Zanatta Streck; Sabrina Arcaro;Renan Antonio Ceretta;Eduardo Antunes Bortoluzzi;Lucas da Fonseca Roberti Garcia;Josiane de Almeida ;Patricia Maria Poli Kopper ;Anarela Vassen Bernardi
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.22.1-22.8
    • /
    • 2023
  • Objectives: This study was conducted to evaluate and compare the tip and taper compatibility of accessory gutta-percha points (AGPs) with various rotary and reciprocating instruments. Materials and Methods: Using a profile analyzer, tip and taper measurements were taken of 10 AGPs of each of the 14 models available from Odous de Deus and the 4 models available from Dentsply-Maillefer. Diameter measurements were taken at 1-mm intervals, from 3 mm from the tip (D3) to 16 mm. Results: Based on the mean values obtained, 3-dimensional (3D) models of the AGPs were drawn in Autodesk Fusion 360 and superimposed on 3D models of each instrument selected (Mtwo, Reciproc, RaCe, K3, and ProDesign Logic) to determine the compatibility between the instrument and the AGP. Data corresponding to the tips and tapers of the various AGPs, as well as the tip and taper differences between the AGPs and the instruments, were analyzed using descriptive statistics. The tapers of the AGPs were subject to the American National Standards Institute/American Dental Association No. 57 standard. The Odous de Deus extra-long medium and extra-long extra-medium AGPs were shown to be compatible with Mtwo, K3, and ProDesign Logic instruments with taper 0.06 and tip sizes 25 and 30, while the Dentsply fine and fine medium cones were compatible with Mtwo, RaCe, and K3 instruments with conicity of 0.04 and tip sizes 35 and 40. Conclusions: Both the Odous de Deus and Dentsply commercial brands included 2 AGP models with tip (D3) and taper compatibility with Mtwo, RaCe, K3, and/or Prodesign Logic instruments.