• Title/Summary/Keyword: measurement and modeling

Search Result 1,299, Processing Time 0.034 seconds

The Variation Analysis on Spatial Distribution of PM10 and PM2.5 in Seoul (서울시 PM10과 PM2.5의 공간적 분포 변이분석)

  • Jeong, Jongchul
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • PM(Particulate Matter) cause serious diseases of air pollution. Most of the studies have analyzed local distribution trends using satellite images or modeling techniques. However,the method using the spatial interpolation method based on the meteorological value is insufficient in Korea. In this study, monthly spatial distribution of $PM_{10}$ and $PM_{2.5}$ in January, February, March, and April of 2018 Seoul Metropolitan City were analyzed based on 39 PM monitoring networks. In addition, a distribution map showing the difference between $PM_{10}$ and $PM_{2.5}$ was based on the distribution obtained through this study. The regions of high $PM_{10}$ and $PM_{2.5}$ emissions were selected. In addition, the correlation between $PM_{10}$ and $PM_{2.5}$ was confirmed through the distribution map. This study analyzed the spatial distribution variation results of analyzing $PM_{10}$ and $PM_{2.5}$ in Seoulthrough spatial analysis technique. As a result of this study, it was confirmed that $PM_{10}$ shows high measured value on the roadside measurement station.

Estimation of Leaf Area Using Leaf Length, Leaf width, and Lamina Length in Tomato (엽장, 엽폭, 엽신장을 이용한 토마토의 엽면적 추정)

  • Lee, Jae Myun;Jeong, Jae Yeon;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • One of the most important factors in predicting tomato growth and yield is the leaf area. Estimating leaf area accurately is the beginning of an effective tomato plant growth assessment model. To this end, this study was conducted to identify the most effective model for estimating plant leaf area through the measurement of tomato plant leaves. Leaf area (LA), leaf length (L), leaf width (W), and lamina length (La) were measured for all leaves of 5 plants at two-week intervals. The correlation between LA and tomato-leaf-independent variables showed a strong positive relationship with the formulas La × W, L × W, La + W, and L + W. For LA estimation, a linear model using the formula LA = a + b (La2 + W2) gave the most accurate estimation (R2 = 0.867, RMSE = 88.76). After examining the positions of upper, middle, and lower leaves from September to December, the coefficient of determination (R2) values for each model were 0.878, 0.726, and 0.794 respectively. The most accurate estimation came from the model that used the upper leaves of the plants. The high accuracy of the upper-leaf-based model is judged by the 50% defoliation performed by farmers after October.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Flood Inflow Estimation at Large Multipurpose Dam using Distributed Model with Measured Flow Boundary Condition at Direct Upstream Channels (직상류 계측유량경계조건과 분포형모델을 이용한 대규모 다목적댐 홍수유입량 산정)

  • Hong, Sug-Hyeon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1039-1049
    • /
    • 2015
  • The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.

Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope (광릉 산지사면에서의 선행강우지수와 토양저류량 비교연구)

  • Gwak, Yong-Seok;Kim, Su-Jin;Lee, Eun-Hyung;Hamm, Se-Yeong;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.30-41
    • /
    • 2016
  • The temporal variation of soil water storage is important in hydrological modeling. In order to evaluate an antecedent wetness state, the antecedent precipitation index (API) has been used. The aim of this article is to compare observed soil water storage with APIs calculated by widely used four equations, to configure the relationship between soil water storage and API by a regression model for one-year(2009), and to predict the soil water storage for the next two years(2010~2011). The soil water storage was evaluated from the observed soil moisture dataset in soil depths of 10, 30, 60cm at 21 locations by TDR measurement system for 3 years. As a result, API with the exponential function among the four equations can describe the variation of the observed soil water storage. Monthly optimized parameters of the API's equations seemed to be roughly related with the (potential) evapotranspiration (PET). Using revised monthly optimized parameters of APIs considering the seasonal pattern of PET, we characterize the relationship between API and the observed soil water storage for one year, which looks better than those of other researches.

Numerical Research on the Lock-in Compensation Method of a Ring Laser Gyroscope for Reducing INS Alignment Time (관성항법장치 초기정렬시간 단축을 위한 링레이저 자이로 lock-in오차 보상방법의 수치해석적인 분석)

  • Shim, Kyu-Min;Jang, Suk-Won;Paik, Bok-Soo;Chung, Tae-Ho;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • Generally, the sinusoidal cavity dither is adopted to ring laser gyroscope for eliminating the lock-in which is non-linear effect at the small rotation input. Despite this method, there are some remained errors which are generated at the dither turnaround, and those errors produce random walk which is a general character of a ring laser gyroscope. As one of the numerous research results for compensating these errors, there is a special lock-in compensation method which is the method of error estimation and compensation by comparing the beat signal periods of before and after the dither turnarounds. In this paper, by ring laser gyroscope modeling and numerical analysis, we verified the theoretical validity and confirmed the effectiveness of this method in expectation of the possible beat signal measurement time resolution. As a result, we confirmed the random walk decreases from a-half to a-third by this lock-in compensation method. So, it is expected to be a remarkable method for reducing the INS alignment time.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.