• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.028 seconds

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Detection and Damping Recognition of Normal Frequency Using Fast Fourier Transform in the Vibration Acceleration Analysis System (진동가속도 분석시스템에서 고속푸리에변환을 이용한 기준진동수의 검출 및 감쇠인식)

  • Kim, Hwang Jun
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.16-20
    • /
    • 2019
  • Fast Fourier Transform in the vibration acceleration analysis system has recently been utilized in the field of sensor measurement. In this paper, we propose a Fast Fourier Transform based method of detecting the normal frequency among the many frequency types of diffuse field. This normal frequency is expressed by the formula of frequency damping recognition which is calculated in a similar way to the octave center frequency. Based on this theory, this paper can more accurately inform noise producers of the degree of damping, which is different from the vibration type of diffuse field.

An improved Big Bang-Big Crunch algorithm for structural damage detection

  • Yin, Zhiyi;Liu, Jike;Luo, Weili;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.735-745
    • /
    • 2018
  • The Big Bang-Big Crunch (BB-BC) algorithm is an effective global optimization technique of swarm intelligence with drawbacks of being easily trapped in local optimal results and of converging slowly. To overcome these shortages, an improved BB-BC algorithm (IBB-BC) is proposed in this paper with taking some measures, such as altering the reduced form of exploding radius and generating multiple mass centers. The accuracy and efficiency of IBB-BC is examined by different types of benchmark test functions. The IBB-BC is utilized for damage detection of a simply supported beam and the European Space Agency structure with an objective function established by structural frequency and modal data. Two damage scenarios are considered: damage only existed in stiffness and damage existed in both stiffness and mass. IBB-BC is also validated by an existing experimental study. Results demonstrated that IBB-BC is not trapped into local optimal results and is able to detect structural damages precisely even under measurement noise.

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng;Chen, Qianyi;Zhang, Hongmei;Yun, Chung Bang;Wu, Sikai;Zhu, Qi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.507-520
    • /
    • 2019
  • In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

Improvement of the Spectral Reconstruction Process with Pretreatment of Matrix in Convex Optimization

  • Jiang, Zheng-shuai;Zhao, Xin-yang;Huang, Wei;Yang, Tao
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.322-328
    • /
    • 2021
  • In this paper, a pretreatment method for a matrix in convex optimization is proposed to optimize the spectral reconstruction process of a disordered dispersion spectrometer. Unlike the reconstruction process of traditional spectrometers using Fourier transforms, the reconstruction process of disordered dispersion spectrometers involves solving a large-scale matrix equation. However, since the matrices in the matrix equation are obtained through measurement, they contain uncertainties due to out of band signals, background noise, rounding errors, temperature variations and so on. It is difficult to solve such a matrix equation by using ordinary nonstationary iterative methods, owing to instability problems. Although the smoothing Tikhonov regularization approach has the ability to approximatively solve the matrix equation and reconstruct most simple spectral shapes, it still suffers the limitations of reconstructing complex and irregular spectral shapes that are commonly used to distinguish different elements of detected targets with mixed substances by characteristic spectral peaks. Therefore, we propose a special pretreatment method for a matrix in convex optimization, which has been proved to be useful for reducing the condition number of matrices in the equation. In comparison with the reconstructed spectra gotten by the previous ordinary iterative method, the spectra obtained by the pretreatment method show obvious accuracy.

Surface Deformation Measurement of the 2020 Mw 6.4 Petrinja, Croatia Earthquake Using Sentinel-1 SAR Data

  • Achmad, Arief Rizqiyanto;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.139-151
    • /
    • 2021
  • By the end of December 2020, an earthquake with Mw about 6.4 hit Sisak-Moslavina County, Croatia. The town of Petrinja was the most affected region with major power outage and many buildings collapsed. The damage also affected neighbor countries such as Bosnia and Herzegovina and Slovenia. As a light of this devastating event, a deformation map due to this earthquake could be generated by using remote sensing imagery from Sentinel-1 SAR data. InSAR could be used as deformation map but still affected with noise factor that could problematize the exact deformation value for further research. Thus in this study, 17 SAR data from Sentinel-1 satellite is used in order to generate the multi-temporal interferometry utilize Stanford Method for Persistent Scatterers (StaMPS). Mean deformation map that has been compensated from error factors such as atmospheric, topographic, temporal, and baseline errors are generated. Okada model then applied to the mean deformation result to generate the modeled earthquake, resulting the deformation is mostly dominated by strike-slip with 3 meter deformation as right lateral strike-slip. The Okada sources are having 11.63 km in length, 2.45 km in width, and 5.46 km in depth with the dip angle are about 84.47° and strike angle are about 142.88° from the north direction. The results from this modeling can be used as learning material to understand the seismic activity in the latest 2020 Petrinja, Croatia Earthquake.

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰 (윤활유 센서의 종류와 기능))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.297-306
    • /
    • 2020
  • This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.

Electrooculography Filtering Model Based on Machine Learning (머신러닝 기반의 안전도 데이터 필터링 모델)

  • Hong, Ki Hyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.274-284
    • /
    • 2021
  • Customized services to a sleep induction for better sleepcare are more effective because of different satisfaction levels to users. The EOG data measured at the frontal lobe when a person blinks his eyes can be used as biometric data because it has different values for each person. The accuracy of measurement is degraded by a noise source, such as toss and turn. Therefore, it is necessary to analyze the noisy data and remove them from normal EOG by filtering. There are low-pass filtering and high-pass filtering as filtering using a frequency band. However, since filtering within a frequency band range is also required for more effective performance, we propose a machine learning model for the filtering of EOG data in this paper as the second filtering method. In addition, optimal values of parameters such as the depth of the hidden layer, the number of nodes of the hidden layer, the activation function, and the dropout were found through experiments, to improve the performance of the machine learning filtering model, and the filtering performance of 95.7% was obtained. Eventually, it is expected that it can be used for effective user identification services by using filtering model for EOG data.

Damage detection using both energy and displacement damage index on the ASCE benchmark problem

  • Khosraviani, Mohammad Javad;Bahar, Omid;Ghasemi, Seyed Hooman
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.151-165
    • /
    • 2021
  • This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six-story steel building structure with single and multiple damage cases.