• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.036 seconds

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹 가공 특성에 관한 연구)

  • 이광복;이용길;김종호
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.724-729
    • /
    • 2003
  • In order to study the shearing characteristic of anti-vibration sheet metal which is used to reduce vibration noise, a blanking die was manufactured to blank a workpiece. The variables employed in this study were clearance, type of stripper plate, position of the rubber layer and type of the die design. These variables were used to study the effects on burr height, blank diameter and camber height. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, showed greater burr height. The rubber-top position of a workpiece resulted in better qualities regardless of working variables. In the comparison of diameter measurement, the use of the push-back die with a fixed stripper plate, with a 4.5% clearance, showed better accuracy. For comparing camber height, the push-back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber layer is laying on the top, blanked with a fixed stripper plate in a push-back die, with a 4.5% clearance.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Real-Time Implementation of Power Frequency Estimation Algorithm Based on a Three-Level Discrete Fourier Transform (3레벨 DFT 기반 계통주파수 측정 알고리즘의 실시간 구현에 관한 연구)

  • Moon, JoonHyuck;son, DaeHee;Song, JiHyun;Song, MyeongHoon;Lee, SeungHee;Kang, SangHee;Nam, SoonRyul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.579-580
    • /
    • 2015
  • Power frequency is one of important operational parameters evaluating reliability, stability, and measuring efficiency of power. Therefore, an accurate and fast estimate of the power frequency is required. The magnitude gains of cosine and sine filters become different when the power frequency is deviated from the nominal value. The proposed algorithm estimates the power frequency based on this. To demonstrate the performance of the proposed algorithm, RTDS and DSP are used. The simulation results show that the algorithm has not only a high level of robustness but also high measurement accuracy over a wide range of frequency changes. In addition, the algorithm was immune to harmonics and noise.

  • PDF

Experimental Analysis of Flow Induced Vibration Measurement Using Fiber Optic Sensor (광섬유 센서를 이용한 유체유기진동의 실험적 측정 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.274-286
    • /
    • 2009
  • Fiber optic sensor is widely used in measuring acoustic and vibration. Especially interferometric sensors are more suitable to measure the acoustic signal. In this paper, a Fabry-Perot interferometric fiber optic sensor was used to measure flow induced vibration. This vibration also measured using an accelerometer, and the data was compared to one other. The venture, nozzle, drop barrel, and rapid expansion in the pipeline are the measuring objects. The flow rate is changed from 50 L/min to 150 L/min and the average flow velocity was about 7 m/s. Based on the experimental results the suggested fiber optic sensor detects flow induced vibration effectively. Therefore, this kind of fiber optic sensor can be applied to the monitoring the flow induced noise and vibration such as pipelines, cables, buildings.

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

Damage detection for beam structures based on local flexibility method and macro-strain measurement

  • Hsu, Ting Yu;Liao, Wen I;Hsiao, Shen Yau
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.393-402
    • /
    • 2017
  • Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply supported beams.

Development of a High Resolution Digital Cinematic Particle Image Velocimetry (고해상도 Cinematic PIV의 개발)

  • Park, Gyeong-Hyeon;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1535-1542
    • /
    • 2001
  • A high resolution digital cinematic Particle Image Velocimetry(PIV) has been developed. The system consists of a high speed CCD camera, a continuous Ar-ion laser and a computer with camera controller. To improve the spatial resolution, we adopt a Recursive Technique for velocity interrogation. At first, we obtain a velocity vector fur a larger interrogation window size based on the conventional two-frame cross-correlation PIV analysis using the FFT algorithm. Based on the knowing velocity information, more spatially resolved velocity vectors are obtained in the next iteration step with smaller interrogation windows. When the correct velocity vector at the first step is found to be critical, a Multiple Correlation Validation(MCV) technique is applied to decrease the spurious vectors. The MCV technique turns out to improve SNR(Signal to Noise Ratio) of the correlation table. The developed cinematic PIV method has been applied to the measurement of the unsteady flow characteristics of a Rushton turbine mixer. A total of 3,245 instantaneous velocity vectors were successfully obtained with 4 ms time resolution. The acquired spatial resolution corresponds to the conventional high resolution digital PIV system using a 1K ${\times}$ 1K CCD camera.

Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry (홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1624-1631
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at Ra = 6.35 $\times$ 10$^{6}$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful fur analyzing the temperature field variations of unsteady thermal fluid flows.

Experimental Study on Transmission Errors of a Single-Stage Planetary Gear Train: Influence of Torque and Speed Variations (1단 유성기어의 전달오차 특성에 대한 실험적 연구 - 토크 및 속도 변화의 영향)

  • Song, Jinseop;Lee, Geun-Ho;Park, Young-Jun;Nam, Yong-Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.320-326
    • /
    • 2015
  • Despite the wide industrial applications of planetary gear trains, the relationship between the design parameters (tooth profile, carrier mass, etc.) and performance (strength, vibration, noise, etc.) remains poorly understood. A significant amount of research has focused on transmission errors, which are measurable performance indicators directly related to the design parameters. Herein, an experimental test rig for a single-stage planetary gear set built using digital angular encoders and gap sensors is described. To study the static and dynamic characteristics of this planetary gear train, the transmission errors and sun gear orbit are analyzed from the data measured under various levels of torque and speed. The transmission errors of the gear train decrease 40% when the speed increases from 30 to 600 rpm with an output torque of 39.2 Nm, and increase 22% when the output torque increases from 19.6 to 39.2 Nm with an input speed of 30 rpm.