• Title/Summary/Keyword: measurement Noise

Search Result 3,227, Processing Time 0.035 seconds

Band-pass Filter based Artificial Filter Bank for Structural Health Monitoring (구조 건전도 모니터링을 위한 대역통과필터 기반 인공필터뱅크)

  • Heo, Gwanghee;Jeon, Joonryong;Jeon, Seunggon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.843-855
    • /
    • 2015
  • This study developed a band-pass filter based artificial filter bank(BAFB) based on that in order to efficiently obtain the significant dynamic responses. The BAFB was then optimized about the El-centro earthquake wave which was often used in the construction research, and the software implementation of BAFB was finally embedded in the wireless unified management system(WiUMS). For the evaluation of the developed BAFB, a real time dynamic response experiment was performed on a cable-stayed bridge model, and the response of the cable-stayed bridge model was measured using both the traditional wired system and the developed BAFB-based WiUMS. The experiment results showed that the compressed dynamic response acquired by the BAFB-based WiUMS matched significantly with that of the traditional wired system while still carrying sufficient modal information of the cable-stayed bridge. Finally, the developed BAFB was able to reconstruct or re-sample the dynamic response wholly from the compressed response signal, and it can be applied as a new kind of measurement system for a wireless sensor networks based structural health monitoring system that secures both economy and efficiency.

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

A Study on the Interferometer Configuration for Improvement of Signal-to-Noise Ratio of Optical Coherence Tomography System (OCT 시스템의 SNR 향상을 위한 간섭계 개선에 관한 연구)

  • Yang, Sung-Kuk;Park, Yang-Ha;Chang, Won-Suk;Oh, Sang-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.126-131
    • /
    • 2004
  • As a noninvasive imaging method, optical coherence tomography system has been extensively studied because it has some advantages such as imaging of high resolution, low cost, and compact size configuration. In order to improve the SNR of OCT system, two types of interferometers were configured and then, we compared simulation with measurement of reference sample. In the OCT system is configured with Michelson interferometer, the contrast of cross-sectional image is reduced with low SNR detection which is due to loss of feedback interference signal from light source part. Also, in order to image measured data with real time, image processing program is constructed. From results of simulation, it is confirmed that improved Michelson interferometer is improved about 10[dB] with a 50 : 50 fiber coupler. And from the measurement of reference sample, about 5[dB] is improved with a 50 : 50 fiber coupler. It is confirmed that the OCT system is configured with the improved Michelson interferometer which has a good distinctive cross-sectional image due to higher contrast.

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms (수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 -)

  • Jeong, Jeong Ho;Lee, Byung Kwon;Yeon, Jun Oh;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

Building Korean Head-related Transfer Function Database (한국형 머리전달함수 데이터베이스 구축)

  • Son, Daehyuk;Park, Youngjin;Park, Yoonsik;Jang, Sei-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Three-dimensional multimedia industry such as 3D TV, movie and broadcast has been developed vividly. For generating 3D contents with high quality, virtual auditory display, so called VAD, is being researched to offer more realistic experience to listeners. When people render VAD using headphones or two speakers, head-related transfer function(HRTF) plays a key role. The best solution is measuring all individuals' HRTFs, but it is hard to measure all listeners' HRTFs. To overcome this difficulty, many research groups have tried to construct their own measurement system and to build HRTF databases. However, some of them have not enough subjects or spatial resolution and they are mainly focused on Caucasian. There exists difference between Korean and Caucasian in a view of physical features. In other words, if Koreans hear three-dimensional sound rendered by HRTF database based on Caucasian, performance might be hindered. To verify this possibility and remedy the drawbacks, construction of new HRTF database aimed at Korean is needed. Therefore, our laboratory built HRTF measurement system which can measure HRTF of three-dimensional space with dense spatial resolution. With this system, 55 Korean males and 45 females' HRTFs were measured and Korean HRTF database was built based on these data.

Transfer Alignment Using Velocity Matching/Parameter Tuning and Its Performance and Observability Analysis (속도정합 및 매개변수 조정을 사용한 전달정렬의 성능 및 가관측성 분석)

  • Yang, Cheol-Kwan;Park, Ki-Young;Kim, Hyoung-Min;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.389-394
    • /
    • 2015
  • This paper considers the transfer alignment in the inertial navigation system which has lever-arm and the time delay in the velocity measurement. We suggest a method to improve the performance of the velocity matching. First, we analyze the estimation performance of the velocity matching through the tuning of the two covariance matrices of process noise and measurement noise. Next we provide some maneuvering conditions of the vehicles to improve the estimation performance using the observability analysis. The analysis results are verified using the computer simulations, which show that cruise movements do not provide the azimuth estimation of the vehicles, while east or north accelerating movement can provide.

Empirical Process Monitoring Via On-line Analysis of Complex Process Measurement Data (복잡한 공정 측정 데이터의 실시간 분석을 통한 공정 감시)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.374-379
    • /
    • 2016
  • On-line process monitoring schemes are designed to give early warnings of process faults. In the artificial intelligence and machine learning fields, reliable approaches have been utilized, such as kernel-based nonlinear techniques. This work presents a kernel-based empirical monitoring scheme with a small sample problem. The measurement data of normal operations are easy to collect, whereas special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing the process monitoring performance. This can be achieved by the preprocessing of raw process data and eliminating unwanted variations of data. In this work, the performance of several monitoring schemes was demonstrated using three-dimensional batch process data. The results showed that the monitoring performance was improved significantly in terms of the detection success rate.

Laboratory Measurement to Provide Threshold of Visibility for Terrestrial 4K-UHDTV Broadcasting based on HEVC over DVB-T2 (HEVC over DVB-T2 기반 지상파 4K-UHDTV 방송을 위한 양시청 기준값 실험실 테스트 결과)

  • Jeon, Sungho;Kim, Sanghoon;Hahm, Sangjin;Yim, Zungkon;Suh, Young-Woo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.506-514
    • /
    • 2016
  • In this study, HEVC over DVB-T2 systems with a bandwidth of 6 MHz is considered, particularly for the terrestrial 4K-UHDTV broadcasting service in the Republic of Korea. The threshold of visibility carrier-to-noise power ratio (ToV C/N) and the receiver minimum required input level (sensitivity) for satisfying the subjective picture failure (SPF) condition are measured in the laboratory. It is observed, for transmitting 26.37 Mbps data stream correctly, that ToV C/N is 18.8 dB on average, and the receiver sensitivity is varied from minimum -84.2 dBm to maximum -80.0 dBm. Based on the results, the receiver noise floor is calculated by -100 dBm on average.

Micro-vibration Isolation Performance of X-band Antenna Using Blade Gear (블레이드 기어를 적용한 2축 짐발 구동 안테나의 미소진동 절연성능)

  • Jeon, Su-Hyeon;Kwon, Seong-Cheol;Kim, Tae-Hong;Kim, Yong-Hoon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2015
  • A 2-axis gimbal-type X-band antenna has been widely used to effectively transmit the high resolution image data from the observation satellite to the desired ground station. However, a discontinuous stepper motor activation for rotating the pointing mechanism in azimuth and elevation directions induces undesirable micro-vibration disturbances which can result in the image quality degradation of a high-resolution observation satellite. To enhance the image quality of the observation satellite, attenuating the micro-vibration induced by an activation of the stepper motor for rotational movements of the antenna is important task. In this study, we proposed a low-rotational-stiffness blade gear applied to the output shaft of the stepper motor to obtain the micro-vibration isolation performance. The design of the blade gear was performed through the structure analysis such that this gear is satisfied with the margin of safety rule under the derived torque budget. In addition, the micro-vibration isolation performance of the blade gear was verified through the micro-vibration measurement test using the dedicated micro-vibration measurement device proposed in this study.

Numerical Investigation of Sunroof Buffeting for Hyundai Simplified Model (HSM의 썬루프 버페팅 수치해석)

  • Khondge, Ashok;Lee, Myunghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.180-188
    • /
    • 2014
  • Hyundai Motor Group(HMG) carried out experimental investigation of sunroof buffeting phenomena on a simplified car model called Hyundai simplified model(HSM). HMG invited participation from commercial CFD vendors to perform numerical investigation of sunroof buffeting for HSM model with a goal to determine whether CFD can predict sunroof buffeting behavior to sufficient accuracy. ANSYS Korea participated in this investigation and performed numerical simulations of sunroof buffeting for HSM using ANSYS fluent, the general purpose CFD code. First, a flow field validation is performed using closed sunroof HSM model for 60 km/h wind speed. The velocity profiles at three locations on the top surface of HSM model are predicted and compared with experimental measurement. Then, numerical simulations for buffeting are performed over range of wind speeds, using advanced scale resolving turbulence model in the form of detached eddy simulation (DES). Buffeting frequency and buffeting level are predicted in simulation and compared with experimental measurement. With reference to comparison between experimental measurements with CFD predictions of buffeting frequency and level, conclusion are drawn about predictive capabilities of CFD for real vehicle development.