• Title/Summary/Keyword: measure term

Search Result 843, Processing Time 0.02 seconds

A Study on the Market Structure Analysis for Durable Goods Using Consideration Set:An Exploratory Approach for Automotive Market (고려상표군을 이용한 내구재 시장구조 분석에 관한 연구: 자동차 시장에 대한 탐색적 분석방법)

  • Lee, Seokoo
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.157-176
    • /
    • 2012
  • Brand switching data frequently used in market structure analysis is adequate to analyze non- durable goods, because it can capture competition between specific two brands. But brand switching data sometimes can not be used to analyze goods like automobiles having long term duration because one of main assumptions that consumer preference toward brand attributes is not changed against time can be violated. Therefore a new type of data which can precisely capture competition among durable goods is needed. Another problem of using brand switching data collected from actual purchase behavior is short of explanation why consumers consider different set of brands. Considering above problems, main purpose of this study is to analyze market structure for durable goods with consideration set. The author uses exploratory approach and latent class clustering to identify market structure based on heterogeneous consideration set among consumers. Then the relationship between some factors and consideration set formation is analyzed. Some benefits and two demographic variables - age and income - are selected as factors based on consumer behavior theory. The author analyzed USA automotive market with top 11 brands using exploratory approach and latent class clustering. 2,500 respondents are randomly selected from the total sample and used for analysis. Six models concerning market structure are established to test. Model 1 means non-structured market and model 6 means market structure composed of six sub-markets. It is exploratory approach because any hypothetical market structure is not defined. The result showed that model 1 is insufficient to fit data. It implies that USA automotive market is a structured market. Model 3 with three market structures is significant and identified as the optimal market structure in USA automotive market. Three sub markets are named as USA brands, Asian Brands, and European Brands. And it implies that country of origin effect may exist in USA automotive market. Comparison between modal classification by derived market structures and probabilistic classification by research model was conducted to test how model 3 can correctly classify respondents. The model classify 97% of respondents exactly. The result of this study is different from those of previous research. Previous research used confirmatory approach. Car type and price were chosen as criteria for market structuring and car type-price structure was revealed as the optimal structure for USA automotive market. But this research used exploratory approach without hypothetical market structures. It is not concluded yet which approach is superior. For confirmatory approach, hypothetical market structures should be established exhaustively, because the optimal market structure is selected among hypothetical structures. On the other hand, exploratory approach has a potential problem that validity for derived optimal market structure is somewhat difficult to verify. There also exist market boundary difference between this research and previous research. While previous research analyzed seven car brands, this research analyzed eleven car brands. Both researches seemed to represent entire car market, because cumulative market shares for analyzed brands exceeds 50%. But market boundary difference might affect the different results. Though both researches showed different results, it is obvious that country of origin effect among brands should be considered as important criteria to analyze USA automotive market structure. This research tried to explain heterogeneity of consideration sets among consumers using benefits and two demographic factors, sex and income. Benefit works as a key variable for consumer decision process, and also works as an important criterion in market segmentation. Three factors - trust/safety, image/fun to drive, and economy - are identified among nine benefit related measure. Then the relationship between market structures and independent variables is analyzed using multinomial regression. Independent variables are three benefit factors and two demographic factors. The result showed that all independent variables can be used to explain why there exist different market structures in USA automotive market. For example, a male consumer who perceives all benefits important and has lower income tends to consider domestic brands more than European brands. And the result also showed benefits, sex, and income have an effect to consideration set formation. Though it is generally perceived that a consumer who has higher income is likely to purchase a high priced car, it is notable that American consumers perceived benefits of domestic brands much positive regardless of income. Male consumers especially showed higher loyalty for domestic brands. Managerial implications of this research are as follow. Though implication may be confined to the USA automotive market, the effect of sex on automotive buying behavior should be analyzed. The automotive market is traditionally conceived as male consumers oriented market. But the proportion of female consumers has grown over the years in the automotive market. It is natural outcome that Volvo and Hyundai motors recently developed new cars which are targeted for women market. Secondly, the model used in this research can be applied easier than that of previous researches. Exploratory approach has many advantages except difficulty to apply for practice, because it tends to accompany with complicated model and to require various types of data. The data needed for the model in this research are a few items such as purchased brands, consideration set, some benefits, and some demographic factors and easy to collect from consumers.

  • PDF

A Study on Profitability of the Allianced Discount Program with Credit Cards and Loyalty Cards in Food & Beverage Industry (제휴카드 할인프로그램이 외식업의 수익성에 미치는 영향)

  • Shin, Young Sik;Cha, Kyoung Cheon
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.55-78
    • /
    • 2011
  • Recently strategic alliance between business firms has become prevalent to overcome increasing competitive threats and to supplement resource limitation of individual firms. As one of allianced sales promotion activities, a new type of discount program, so called "Alliance Card Discount", is introduced with the partnership of credit cards and loyalty cards. The program mainly pursues short-term sales growth by larger discount scheme while spends less through cost share among alliance partners. Thus this program can be regarded as cost efficient discount promotion. But because there is no solid evidence that it can really deliver profitable sales growth, an empirical study for its effects on sales and profit should be conducted. This study has two basic research questions concerning the effects of allianced discount program ; 1)the possibility of sales increase 2) the profitability of the discount driven sales. In F&B industry, sales increase mainly comes from increased guest count. Especially in family restaurants, to increase the number of guests we need to enlarge the size of visitor group (number of visitors for one group) because customers visit by group in a special occasion. And because they pay the bill by group(table), the increase of sales per table is a key measure for sales improvement. The past researches for price & discount sensitivity and reference discount rate explain that price sensitive consumers have narrow reference discount zone and make rational purchase decision. Differently from all time discount scheme of regular sales promotions, the alliance card discount program only provides the right to get discount like discount coupon. And because it is usually once a month opportunity given by the past month usage level, customers tend to perceive alliance card discount as a rare chance to get. So that we can expect customers try to maximize the discount effect when they use the limited discount opportunity. Considering group visiting practice and low visit frequency of family restaurants, the way to maximize discount effect should be the increase the size of visit group. And their sensitivity to discount and rational consumption behavior defer the additional spending for ordering high price menu, even though they get considerable amount of savings from the discount. From the analysis of sales data paid by alliance discount cards for four months, we found the below. 1) The relation between discount rate and number of guest per table is positive : 25% discount results one additional guest 2) The relation between discount rate and the spending per guest is negative. 3) However, total profit amount per table is increased when discount rate is increased. 4) Reward point accumulation & redemption did not show any significant relationship with the increase of number of guests. These results suggest that the allianced discount program substantially contributes to sales increase and profit improvement by increasing the number of guests per table. Though the spending per guest is decreased by discount rate increase, the total amount of profit per table is improved. It seems the incremental profit by increased guest count offsets the profit decrease. Additional intriguing finding is the point reward system does not have any significant impact on the increase of number of guest, even if the point accumulation & redemption of loyalty program are usually regarded as another saving offers by customers. In sum, because it is proved that allianced discount program with credit cards and loyalty cards is effective to both sales drive and profit increase, the alliance card program could be recommended as strategically buyable program.

  • PDF

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.