• Title/Summary/Keyword: mean-square error

Search Result 2,209, Processing Time 0.037 seconds

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

Analysis and Calculation of Global Hourly Solar Irradiation Based on Sunshine Duration for Major Cities in Korea (국내 주요도시의 일조시간데이터를 이용한 시간당전일사량 산출 및 분석)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • Computer simulation of buildings and solar energy systems are being used increasingly in energy assessments and design. This paper discusses the possibility of using sunshine duration data instead of global hourly solar irradiation (GHSI) data for localities with abundant data on sunshine duration. For six locations in South Korea where global radiation is currently measured, the global radiation was calculated using Sunshine Duration Radiation Model (SDRM), compared and analyzed. Results of SDRM has been compared with the measured data on the coefficients of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). This study recommends the use of sunshine duration based irradiation models if measured solar radiation data is not available.

Original Identifier Code for Patient Information Security

  • Ahmed Nagm;Mohammed Safy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.141-148
    • /
    • 2023
  • During the medical data transmissions, the protection of the patient information is vital. Hence this work proposes a spatial domain watermarking algorithm that enhances the data payload (capacity) while maintaining the authentication and data hiding. The code is distributed at every pixel of the digital image and not only in the regions of non-interest pixels. But the image details are still preserved. The performance of the proposed algorithm is evaluated using several performance measures such as the mean square error (MSE), the mean absolute error (MAE), and the peak signal to noise Ratio (PSNR), the universal image quality index (UIQI) and the structural similarity index (SSIM).

Prediction of COVID-19 Confirmed Cases in Consideration of Meteorological Factors (기상 요인을 고려한 일일 COVID-19 확진자 예측)

  • Choo, Kyung Su;Jeong, Dam;Lee, So Hyun;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.68-68
    • /
    • 2022
  • 코로나바이러스는(COVID-19)는 2019년 12일 중국 후베이성 우한시에서 시작된 코로나바이러스감염증으로 2020년 1월부터 전 세계로 퍼져, 일부 국가 및 지역을 제외한 대부분의 나라와 모든 대륙으로 확산되었다. 이에 WHO는 범 유행전염병(Pandemic)을 선언하였다. 2022년 3월 18일 현재 국내 누적 확진환자 8,657,609명과 11,782명의 사망자를 일으켰고 전 세계적으로도 많은 사상자를 내고 있는 실정이고 사회 및 경제적인 피해로도 계속 확대되고 있다. 많은 감염자와 사망자의수에 대한 예측은 코로나바이러스의 전염병을 예방하고 즉각적 조치를 취할 수 있는데 도움이 될 수 있다. 본 연구에서는 문화적 인자를 제외한 국내에서 연구 사례가 많지 않은 기상 요인을 인자로 포함하여 머신러닝 모델을 통해 확진자를 예측하였다. 그리고 여러 가지 모델을 성능 평가 기법인 Root Mean Square Error(RMSE) 및 Mean Absolute Percentage Error(MAPE)를 통해 성능을 평가하고 비교하여 정확도 높은 모델을 제시하였다.

  • PDF

A Study on the Lifetime Prediction of Lithium-Ion Batteries Based on the Long Short-Term Memory Model of Recurrent Neural Networks

  • Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.236-241
    • /
    • 2024
  • Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.

New variable adaptive coefficient algorithm for variable circumstances (가변환경에 적합한 새로운 가변 적응 계수에 관한 연구)

  • 오신범;이채욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 1999
  • One of the most popular algorithm in adaptive signal processing is the least mean square(LMS) algorithm. The majority of these papers examine the LMS algorithm with a constant step size. The choice of the step size reflects a tradeoff between misadjustment and the speed of adaptation. Subsequent works have discussed the issue of optimization of the step size or methods of varying the step size to improve performance. However there is as yet no detailed analysis of a variable step size algorithm that is capable of giving both the speed of adaptation and convergence. In this paper we propose a new variable step size algorithm where the step size adjustment is controlled by square of the prediction error. The simulation results obtained using the new algorithm about noise canceller system and system identification are described. They are compared to the results obtained for other variable step size algorithm. function.

  • PDF

The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm (비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합)

  • Jang, Kyoung-Hoon;Jo, Ho-Sang;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we proposed non-linear gamma curve algorithm for gamma correction. The previous non-linear gamma curve algorithm is generated by the least square polynomial using the Gauss-Jordan inverse matrix. However, the previous algorithm has some weak points. When calculating coefficients using inverse matrix of higher degree, occurred truncation errors. Also, only if input sample points are existed regular interval on 10-bit scale, the least square polynomial is accurately works. To compensate weak-points, we calculated accurate coefficients of polynomial using eigenvalue and orthogonal value of mat11x from singular value decomposition (SVD) and QR decomposition of vandemond matrix. Also, we used input data part segmentation, then we performed polynomial curve fitting and merged curve fitting results. When compared the previous method and proposed method using the mean square error (MSE) and the standard deviation (STD), the proposed segmented polynomial curve fitting is highly accuracy that MSE under the least significant bit (LSB) error range is approximately $10^{-9}$ and STD is about $10^{-5}$.

A Study on Error of Frequence Rainfall Estimates Using Random Variate (무작위변량을 이용한 강우빈도분석시 내외삽오차에 관한 연구)

  • Chai, Han Kyu;Eam, Ki Ok
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.159-167
    • /
    • 2000
  • In the study rainfall frequency analysis attemped the many specific property data record duration it is differance from occur to error-term and probability ditribution of concern manifest. error-term analysis of method are fact sample data using method in other hand it is not appear to be fault that sample data of number to be small random variates. Therefore, day-rainfall data: to randomicity consider of this study sample data to the Monte Carlo method by randomize after data recode duration of form was choice method which compared an assumed maternal distribution from splitting frequency analysis consequence. In the conclusion, frequency analysis of chuncheon region rainfall appeared samll RMSE to the Gamma II distribution. In the rainfall frequency analysis estimate RMSE using random variates great transform, RMSE is appear that return period increasing little by little RMSE incresed and data number incresing to RMSE decreseing.

  • PDF

Active Noise Control Algorithm having Fast Convergence (빠른 수렴성을 갖는 능동 소음제어 알고리즘에 관한 연구)

  • 나희승;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.670-677
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithm. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popular algorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer stimulations and experiments.

  • PDF

Optimization of Neural Network Structure for the Efficient Bushing Model (효율적인 신경망 부싱모델을 위한 신경망 구성 최적화)

  • Lee, Seung-Kyu;Kim, Kwang-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.