• Title/Summary/Keyword: mean-square error

Search Result 2,209, Processing Time 0.026 seconds

A Nonlinear Filtered-X LMS Algorithm for the Nonlinear Compensation of the Secondary Path in Active Noise Control (능동 소음 제어 시스템의 2차 경로 비선형 특성을 보상하기 위한 적응 비선형 Filtered-X Least Mean Square (FX-LMS) 알고리듬)

  • Jeong, I.S.;Kim, D.H.;Nam, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.565-567
    • /
    • 2004
  • In active noise control (ANC) systems, the convergence behavior of the conventional Filtered-X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortions in the secondary path (e.g., in the power amplifiers, loudspeakers, transducers, etc.), which may lead to degradation of the error-reduction performance of the ANC systems. In this paper, a stable FXLMS algorithm with fast convergence is proposed to compensate for undesirable nonlinear distortions in the secondary-path of ANC systems by employing the Volterra filtering approach. In particular, the proposed approach is based on the utilization of the conventional P-th order inverse approach to nonlinearity compensation in the secondary path of ANC systems. Finally, the simulation results showed that the proposed approach yields a better convergence behavior In the nonlinear ANC systems than the conventional FXLMS.

  • PDF

Adaptive control of Runout in Active magnetic bearing (능동 자기베어링 런아웃의 적응제어)

  • 김재실;배철용;이재환;안대균;최헌오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.333-338
    • /
    • 2002
  • 자기베어링의 회전정밀도에 영향을 미치는 인자로 PWM 전력증폭기, 위치 센서 등과 같은 자기베어링 구성 장치의 동특성 및 정밀도, 시스템의 정확한 모델링, 제어기법, 런아웃 등이 있다. 본 연구에서는 능동 자기베어링을 제어하기 위해 자기베어링의 PWM 전력증폭기와 회전축을 모델링하고 이를 바탕으로 능동 자기베어링 제어를 위한 PID 제어기를 구성하였으며, 변위 센서의 부착위치 및 회전축의 진원도의 영향으로 발생하는 주기적인 런아웃 요소를 첨가하여 런아웃의 영향을 확인하였으며, 런아웃 (Runout)에 의해 발생하는 에러(Error)를 효과적으로 제어하여 자기베어링의 제어 정밀도를 향상시키기 위한 방법으로 기본적인 PID 제어기에 최소평균자승(Least Mean Square, LMS) 알고리즘을 적용한 적응 피드포워드 제어기를 구성하여 자기베어링의 능동 제어에서 발생하는 주기적인 런아웃을 효과적으로 제어할 수 있음을 MATLAB을 통한 시뮬레이션을 통해 확인하였다.

  • PDF

Performance Improvement of Stereo Acoustic Echo Canceller Using MINT Filtering (MINT 필터링에 의한 스테레오 음향 반향 제거기의 성능 향상)

  • 차경환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.42-46
    • /
    • 2002
  • In this paper, a new pre-processing algorithm is proposed to improve the performance of stereo acoustic echo canceller. The proposed algorithm has the improved performance by the estimation error reduction of filter coefficient using input signal which was reduced reverberation of room in the basis MINT (Mu1tip1e-input/output Inverse Theorem) filtering. For real stereo speech signal and real room impulse response the results of simulation, we showed that the proposed method could improved 3∼5 dB ERLE (Echo Return Loss Enhancement) regardless of NLMS (Normalized Least Mean Square) and Projection adaptive algorithm.

Performance Analysis of Self-Orthogonalizing Decision Feedback Equalizer over Multipath Rayleigh Fading Channel (다중경로 레일리 페이딩 채널에서의 자기 직교화 결정궤환 등화기의 성능 분석)

  • 신환욱;김응배;김남일;강충구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.11B
    • /
    • pp.1884-1894
    • /
    • 2000
  • 광대역 무선 통신 시스템에서는 주파수 선택적 다중경로 페이딩 채널상에서 발생하는 인접 심볼간의 간섭에 의한 성능 열화를 극복하기 위해서 채널 등화 기술의 도입이 필연적이다. 그러나, 데이터 전송률이 증가함에 따라 채널 등화에 필요한 훈련열의 길이가 늘어나고, 이로 인한 오버헤드를 감소하기 위해서는 보다 수렴률이 높은 적응 알고리즘이 요구된다. 본 논문에서는 주파수 영역의 적응 여파 기법 중의 하나인 자기 직교환 방식의 결정궤환 등화기를 고려한다. 이 채널 등화기에서는 적응 알고리즘으로 DCT-LMS (discrete cosine transform least mean square) 알고리즘을 채택함으로써 수렴률과 MSE (mean square error) 성능을 향상시켜 결과적으로 광대역 무선통신에서 요구되는 훈련열에 따른 오버헤드를 감소시킬 수 있게 된다. 시뮬레이션을 통해 주파수 선택적 다중경로 페이딩 채널에서의 제안된 채널 등화 기법에 대한 성능을 분석한다.

  • PDF

Prediction Value Estimation in Transformed GARCH Models (변환된 GARCH모형에서의 예측값 추정)

  • Park, Ju-Yeon;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.971-979
    • /
    • 2009
  • In this paper, we introduce the method that reduces the bias when the transformation and back-transformation approach is applied in GARCH models. A parametric bootstrap is employed to compute the conditional expectation which is the prediction value to minimize mean square errors in the original scale. Through the analyese of returns of KOSPI and KOSDAQ, we verified that the proposed method provides a bias-reduced estimation for the prediction value.

ESTIMATION OF NON-INTEGRAL AND INTEGRAL QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

  • Song, IL Young;Shin, Vladimir;Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.45-60
    • /
    • 2017
  • This paper focuses on estimation of an non-integral quadratic function (NIQF) and integral quadratic function (IQF) of a random signal in dynamic system described by a linear stochastic differential equation. The quadratic form of an unobservable signal indicates useful information of a signal for control. The optimal (in mean square sense) and suboptimal estimates of NIQF and IQF represent a function of the Kalman estimate and its error covariance. The proposed estimation algorithms have a closed-form estimation procedure. The obtained estimates are studied in detail, including derivation of the exact formulas and differential equations for mean square errors. The results we demonstrate on practical example of a power of signal, and comparison analysis between optimal and suboptimal estimators is presented.

Performance Analysis of Electrical MMSE Linear Equalizers in Optically Amplified OOK Systems

  • Park, Jang-Woo;Chung, Won-Zoo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.232-236
    • /
    • 2011
  • We analyze the linear equalizers used in optically amplified on-off-keyed (OOK) systems to combat chromatic dispersion (CD) and polarization mode dispersion (PMD), and we derive the mathematical minimum mean squared error (MMSE) performance of these equalizers. Currently, the MMSE linear equalizer for optical OOK systems is obtained by simulations using adaptive approaches such as least mean squared (LMS) or constant modulus algorithm (CMA), but no theoretical studies on the optimal solutions for these equalizers have been performed. We model the optical OOK systems as square-law nonlinear channels and compute the MMSE equalizer coefficients directly from the estimated optical channel, signal power, and optical noise variance. The accuracy of the calculated MMSE equalizer coefficients and MMSE performance has been verified by simulations using adaptive algorithms.

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.

Inertia and Coefficient of Friction Estimation of Electric Motor using Recursive Least-Mean-Square Method (순환 최소자승법을 이용한 전동기 관성과 마찰계수 추정)

  • Kim, Ji-Hye;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.311-316
    • /
    • 2007
  • This paper proposes the algorithm which estimates moment of the inertia and friction coefficient of friction for high performance speed control of electric motor. The proposed algorithm finds the moment of inertia and friction coefficient of friction by observing the speed error signal generated by the speed observer and using Recursive Least-Mean-Square method(RLS). By feedbacking the estimated inertia and estimated coefficient of friction to speed controller and full order speed observer, then the errors of the inertia and coefficient of friction and speed due to the inaccurate initial value are decreased. Inertia and coefficient of friction converge to the actual value within several times of speed changing. Simulation and actual experiment results are given to demonstrate the effectiveness of the proposed parameter estimator.

Mathematical representation to assess the wind resource by three parameter Weibull distribution

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • Weibull distribution is a conspicuous distribution known for its accuracy and its usage for wind energy analysis. The two and three parameter Weibull distributions are adopted in this study to fit wind speed data. The daily mean wind speed data of Ennore, Tamil Nadu, India has been used to validate the procedure. The parameters are estimated using maximum likelihood method, least square method and moment method. Four statistical tests namely Root mean square error, R2 test, Kolmogorov-Smirnov test and Anderson-Darling test are employed to inspect the fitness of Weibull probability density functions. The value of shape factor, scale factor, wind speed and wind power are determined at a height of 100m using extrapolation of numerical equations. Also, the value of capacity factor is calculated mathematically. This study provides a way to evaluate feasible locations for wind energy assessment, which can be used at any windy site throughout the world.