• Title/Summary/Keyword: mean-square error

Search Result 2,209, Processing Time 0.027 seconds

Sum MSE Minimization for Downlink Multi-Relay Multi-User MIMO Network

  • Cho, Young-Min;Yang, Janghoon;Seo, Jeongwook;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2722-2742
    • /
    • 2014
  • We propose methods of linear transceiver design for two different power constraints, sum relay power constraint and per relay power constraint, which determine signal processing matrices such as base station (BS) transmitter, relay precoders and user receivers to minimize sum mean square error (SMSE) for multi-relay multi-user (MRMU) networks. However, since the formulated problem is non-convex one which is hard to be solved, we suboptimally solve the problems by defining convex subproblems with some fixed variables. We adopt iterative sequential designs of which each iteration stage corresponds to each subproblem. Karush-Kuhn-Tucker (KKT) theorem and SMSE duality are employed as specific methods to solve subproblems. The numerical results verify that the proposed methods provide comparable performance to that of a full relay cooperation bound (FRCB) method while outperforming the simple amplify-and-forward (SAF) and minimum mean square error (MMSE) relaying in terms of not only SMSE, but also the sum rate.

Multi-Stage Adaptive Noise Cancellation Technique for Synthetic $Hard-{\alpha}$ Inclusion (합성 $Hard-{\alpha}$ Inclusion의 다단계 적응형 노이즈 제거기법 연구)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.455-463
    • /
    • 2003
  • Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed.

A Design of Optimal Masks in Hadamard Transform Spectrometers (하다마드 분광계측기의 마스크 설계)

  • 박진배
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.239-248
    • /
    • 1995
  • The method of increasing signal to noise ratio (SNR) in a Hadamard transform spectrometer (HTS) is multiplexing. The multiplexing is executed by a mask. Conventional masks are mechanical or electro-optical. A mechanical mask has disadvantages of jamming and misalignment. A stationary electro-optical mask has a disadvantage of information losses caused by spacers which partition mask elements. In this paper, a mixed-concept electro-optical mask (MCEOM) is developed by expanding the length of a spacer to that of lon-off mask element. An MCEOM is operated by stepping a movable mask. 2N measurements are required for N spectrum estimates. The average mean square error (AMSE) using MCEQM is equal to that using a stationary electro-optical mask without spacers for large N. The cost of manufacturing an MCEOM is lower than that of producing a conventional electro-optical mask because an MCEOM needs only (N + 1)/2 on-off mask elements whereas the con¬ventional electro-optical mask needs N on-off mask elements. There are no information losses in the spectrometers having an MCEOM.

  • PDF

Sub-pixel Image Magnification Using Adaptive Linear Interpolation (적응적인 선형 보간을 이용한 부화소 기반 영상 확대)

  • Yoo, Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.1000-1009
    • /
    • 2006
  • We propose an adaptive linear interpolation locating sub-pixels. We utilize a pixel-based parameter in the conventional linear interpolation. To optimally obtain the parameter, we propose a generic interpolation structure including a low pass filter and minimum mean square error. We also propose a simple version of the generic interpolation method, which obtain a closed-form solution. Simulation results show that the proposed method is superior to the state-of-the-art methods such as warped distance linear interpolation and shifted linear interpolation, as well as the conventional method such as the linear interpolation and the cubic convolution interpolation in terms of the subjective and objective image quality.

  • PDF

Estimation of P(X > Y) when X and Y are dependent random variables using different bivariate sampling schemes

  • Samawi, Hani M.;Helu, Amal;Rochani, Haresh D.;Yin, Jingjing;Linder, Daniel
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.385-397
    • /
    • 2016
  • The stress-strength models have been intensively investigated in the literature in regards of estimating the reliability ${\theta}$ = P(X > Y) using parametric and nonparametric approaches under different sampling schemes when X and Y are independent random variables. In this paper, we consider the problem of estimating ${\theta}$ when (X, Y) are dependent random variables with a bivariate underlying distribution. The empirical and kernel estimates of ${\theta}$ = P(X > Y), based on bivariate ranked set sampling (BVRSS) are considered, when (X, Y) are paired dependent continuous random variables. The estimators obtained are compared to their counterpart, bivariate simple random sampling (BVSRS), via the bias and mean square error (MSE). We demonstrate that the suggested estimators based on BVRSS are more efficient than those based on BVSRS. A simulation study is conducted to gain insight into the performance of the proposed estimators. A real data example is provided to illustrate the process.

A Study on the Partial Path Loss Model By Using the Free Space and Rata Path Loss Model (자유 공간 모델과 하타 모델을 이용한 구간별 경로 손실 모델 설정에 관한 연구)

  • Park, Kyung-Tae;Cho, Hyung-Rae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.194-198
    • /
    • 2011
  • In this paper, we obtained the path loss characteristics in the 850 MHz for Russia area by using the free space path loss model and Okumura-Hata path loss model. In order to extract the additional path loss model parameter from the new Russian regional properties, the mean square error technique is used to obtain the correction factor. According to the obtained correction factor, the differences for the free space and Hata path loss model are 17, 6 dB in the 5 ~ 10 Km, 28, 14 dB in the 10 ~ 15 Km, and 35, 18 dB in the 15 ~ 20 Km. By applying the correction factors, the appropriate partial path loss models for the measured Russain area are proposed.

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

Disinfection Models to Predict Inactivation of Artemia sp. via Physicochemical Treatment Processes (물리·화학적 처리공정을 이용한 Artemia sp. 불활성화 예측을 위한 소독 모델)

  • Zheng, Chang;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.421-432
    • /
    • 2017
  • In this study, we examined the suitability of ten disinfection models for predicting the inactivation of Artemia sp. via single or combined physical and chemical treatments. The effect of Hydraulic Retention Time (HRT) on the inactivation of Artemia sp. was examined experimentally. Disinfection models were fitted to the experimental data by using the GInaFiT plug-in for Microsoft Excel. The inactivation model were evaluated on the basis of RMSE (Root Mean Square Error), SSE (mean Sum Square Error) and $r^2$. An inactivation model with the lowest RMSE, SSE and $r^2$ close to 1 was considered the best. The Weibull+Tail model was found to be the most appropriate for predicting the inactivation of Artemia sp. via electrolytic treatment and electrolytic-ultrasonic combined treatment. The Log-linear+Tail model was the most appropriate for modeling inactivation via homogenization and combined electrolytic-homogenization treatment. The double Weibull disinfection model was the most suitable for the predicting inactivation via ultrasonic treatment.

Variation in Energy and Nutrient Composition of Oilseed Meals from Different Countries (수입 박류사료내 에너지 및 영양소 함량의 변이)

  • Son, Ah Reum
    • Korean Journal of Poultry Science
    • /
    • v.47 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • This study was conducted to investigate the variation in nutrient composition of oilseed meals and to develop prediction equations for amino acid concentrations. Energy and nutrient contents were determined in a total of 1,380 feed ingredient samples including copra byproducts, corn distillers, dried grains with solubles, palm kernel byproducts, and soybean meal. The ingredient samples were imported to the Republic of Korea between 2006 and 2015. Data were analyzed using the MIXED procedure of SAS. The regression procedure of SAS was used to generate the prediction equation for the lysine concentration using the crude protein (CP) concentration as an independent variable. The concentrations of moisture, gross energy, CP, ether extract, crude fiber, ash, calcium, phosphorus, lysine, methionine, cysteine, and threonine in tested oilseed meals differed (P<0.05) depending on producing countries. The prediction equations for amino acid concentrations (% as-is basis) in the oilseed meals are: lysine = -1.08 + 0.080 × CP (root mean square error = 0.244, R2 = 0.924, and P<0.001); threonine = -0.297 + 0.044 × CP (root mean square error = 0.099, R2 = 0.958, and P<0.001). In conclusion, energy and nutrient compositions vary in the oilseed meals depending on the producing countries. Moreover, the crude protein concentration can be used as a suitable independent variable for estimating lysine and threonine concentrations in the oilseed meals.

Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions (포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가)

  • Park, Sung-Min;Kim, Young-Sig
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.