• 제목/요약/키워드: mean-square error

Search Result 2,209, Processing Time 0.025 seconds

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures (미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델)

  • Kim, Seon-Young;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1296-1303
    • /
    • 2014
  • This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.