• Title/Summary/Keyword: mean-square error

Search Result 2,209, Processing Time 0.026 seconds

Fractal image compression with perceptual distortion measure (인지 왜곡 척도를 사용한 프랙탈 영상 압축)

  • 문용호;박기웅;손경식;김윤수;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.587-599
    • /
    • 1996
  • In general fractal imge compression, each range block is approximated by a contractive transform of the matching domain block under the mean squared error criterion. In this paper, a distortion measure reflecting the properties of human visual system is defined and applied to a fractal image compression. the perceptual distortion measure is obtained by multiplying the mean square error and the noise sensitivity modeled by using the background brightness and spatial masking. In order to compare the performance of the mean squared error and perceptual distortion measure, a simulation is carried out by using the 512*512 Lena and papper gray image. Compared to the results, 6%-10% compression ratio improvements under improvements under the same image quality are achieved in the perceptual distortion measure.

  • PDF

A Modified Decision-Directed LMS Algorithm (수정된 DD LMS 알고리즘)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.3-8
    • /
    • 2016
  • We propose a modified form of the decision-directed least mean square (DD LMS) algorithm that is widely used in the optimization of self-adaptive equalizers, and show the modified version greatly improves the initial convergence properties of the conventional algorithm. Existing DD LMS regards the difference between a equalizer output and a quantization value for it as an error, and achieves an optimization of the equalizer based on minimizing the mean squared error cost function for the equalizer coefficients. This error generating method is useful for binary signal or a single-level signals, however, in the case of multi-level signals, it is not effective in the initialization of the equalizer. The modified DD LMS solves this problem by modifying the error generation. We verified the usefulness and performance of the modified DD LMS through experiments with multi-level signals under distortions due to intersymbol interference and additive noise.

Wine Quality Prediction by Using Backward Elimination Based on XGBoosting Algorithm

  • Umer Zukaib;Mir Hassan;Tariq Khan;Shoaib Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.31-42
    • /
    • 2024
  • Different industries mostly rely on quality certification for promoting their products or brands. Although getting quality certification, specifically by human experts is a tough job to do. But the field of machine learning play a vital role in every aspect of life, if we talk about quality certification, machine learning is having a lot of applications concerning, assigning and assessing quality certifications to different products on a macro level. Like other brands, wine is also having different brands. In order to ensure the quality of wine, machine learning plays an important role. In this research, we use two datasets that are publicly available on the "UC Irvine machine learning repository", for predicting the wine quality. Datasets that we have opted for our experimental research study were comprised of white wine and red wine datasets, there are 1599 records for red wine and 4898 records for white wine datasets. The research study was twofold. First, we have used a technique called backward elimination in order to find out the dependency of the dependent variable on the independent variable and predict the dependent variable, the technique is useful for predicting which independent variable has maximum probability for improving the wine quality. Second, we used a robust machine learning algorithm known as "XGBoost" for efficient prediction of wine quality. We evaluate our model on the basis of error measures, root mean square error, mean absolute error, R2 error and mean square error. We have compared the results generated by "XGBoost" with the other state-of-the-art machine learning techniques, experimental results have showed, "XGBoost" outperform as compared to other state of the art machine learning techniques.

An improved estimation procedure of population mean using bivariate auxiliary information under non-response

  • Bhushan, Shashi;Pandey, Abhay Pratap
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • We propose new classes of estimators of population mean under non-response using bivariate auxiliary information. Some improved regression (or difference) type estimators have been proposed in four different situations of non response along with their properties and the expressions for the bias and mean square errors of the proposed estimators are derived under double (two-stage) sampling scheme. The properties of the suggested class of estimators are studied and it is observed that the proposed estimators performed better when compared to conventional estimators proposed by Singh and Kumar (Journal of Statistical Planning and Inference, 140, 2536-2550, 2010b), Shabbir and Khan (Communications in Statistics - Theory and Methods, 42, 4127-4145, 2013) and Bhushan and Naqvi (Journal of Statistics and Management Systems, 18, 573-602, 2015). A comparative study is also conducted both theoretically as well as empirically in order to support the results.

Performance Comparison of Various Extended Kalman Filter and Cost-Reference Particle Filter for Target Tracking with Unknown Noise (노이즈 불확실성하에서의 확장칼만필터의 변종들과 코스트 레퍼런스 파티클필터를 이용한 표적추적 성능비교)

  • Shin, Myoungin;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.99-107
    • /
    • 2018
  • In this paper, we study target tracking in two dimensional space using a Extended Kalman filter(EKF), various Extended Kalman Filter and Cost-Reference Particle Filter(CRPF), which can effectively estimate the state values of nonlinear measurement equation. We introduce various Extended Kalman Filter which the Unscented Kalman Filter(UKF), the Central Difference Kalman Filter(CDKF), the Square Root Unscented Kalman Filter(SR-UKF), and the Central Difference Kalman Filter(SR-CDKF). In this study, we calculate Mean Square Error(MSE) of each filters using Monte-Carlo simulation with unknown noise statistics. Simulation results show that among the various of Extended Kalman filter, Square Root Central Difference Kalman Filter has the best results in terms of speed and performance. And, the Cost-Reference Particle Filter has an advantageous feature that it does not need to know the noise distribution differently from Extended Kalman Filter, and the simulation result shows that the excellent in term of processing speed and accuracy.

Large-sample comparisons of calibration procedures when both measurements are subject to error

  • Lee, Seung-Hoon;Yum, Bong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.254-262
    • /
    • 1990
  • A predictive functional relationship model is presented for the calibration problem in which the standard as well as the nonstandard measurements are subject to error. For the estimation of the relationship between the two measurements, the ordinary least squares and maximum likelihood estimation methods are considered, while for the prediction of unknown standard measurementswe consider direct and inverse approaches. Relative performances of those calibration procedures are compared in terms of the asymptotic mean square error of prediction.

  • PDF

Location Estimation for Multiple Targets Using Expanded DFS Algorithm (확장된 깊이-우선 탐색 알고리듬을 적용한 다중표적 위치 좌표 추정 기법)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1207-1215
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots in consideration of obstacles. In order to match up targets with measured azimuths, to add to the depth-first search (DFS) algorithms in free-obstacle environment, we suggest the expanded DFS (EDS) algorithm including bypass path search, partial path search, middle level ending, and the supplementation of decision metric. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the error rate of estimated location, mean number of calculating nodes, and mean distance between real coordinates and estimated coordinates of the proposed algorithms.

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

A Wavelet CODEC that is with JPEG (JPEG와 호환 가능한 Wavelet CODEC)

  • Kim, Yong-Gyu;Kim, Dok-Gyu;Jo, Seok-Pal
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.43-53
    • /
    • 2001
  • WT(Wavelet Transform) is used to avoid blocking effect that is the disadvantage of JPEG using DCT(Discrete Cosine Transform). Because the proposed coding scheme is the same as JPEG, the proposed algorithm is compatible with that of JPEG. To achieve the goal, WT'ed image is reconstructed into 8$\times$8 coding block. Each coding block is quantized with the proposed weighting matrix that is derived from human visual characteristic and error analysis in WT'ed domain. By experiments, the proposed algorithm is superior to JPEG, in terms of PSNR(Peak Signal to Noise Ratio) and WMSE(Weighted Mean Square Error).

  • PDF

Optimized Integer Cosine Transform (최적화 정수형 여현 변환)

  • 이종하;김혜숙;송인준;곽훈성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1207-1214
    • /
    • 1995
  • We present an optimized integer cosine transform(OICT) as an alternative approach to the conventional discrete cosine transform(DCT), and its fast computational algorithm. In the actual implementation of the OICT, we have used the techniques similar to those of the orthogonal integer transform(OIT). The normalization factors are approximated to single one while keeping the reconstruction error at the best tolerable level. By obtaining a single normalization factor, both forward and inverse transform are performed using only the integers. However, there are so many sets of integers that are selected in the above manner, the best OICT matrix obtained through value minimizing the Hibert-Schmidt norm and achieving fast computational algorithm. Using matrix decomposing, a fast algorithm for efficient computation of the order-8 OICT is developed, which is minimized to 20 integer multiplications. This enables us to implement a high performance 2-D DCT processor by replacing the floating point operations by the integer number operations. We have also run the simulation to test the performance of the order-8 OICT with the transform efficiency, maximum reducible bits, and mean square error for the Wiener filter. When the results are compared to those of the DCT and OIT, the OICT has out-performed them all. Furthermore, when the conventional DCT coefficients are reduced to 7-bit as those of the OICT, the resulting reconstructed images were critically impaired losing the orthogonal property of the original DCT. However, the 7-bit OICT maintains a zero mean square reconstruction error.

  • PDF