• Title/Summary/Keyword: mean-square error

Search Result 2,209, Processing Time 0.036 seconds

Estimation of the wind speed in Sivas province by using the artificial neural networks

  • Gurlek, Cahit;Sahin, Mustafa;Akkoyun, Serkan
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.161-167
    • /
    • 2021
  • In this study, the artificial neural network (ANN) method was used for estimating the monthly mean wind speed of Sivas, in the central part of Turkey. Eighteen years of wind speed data obtained from nine measurement stations during the period of 2000-2017 at 10 m height was used for ANN analysis. It was found that mean absolute percentage error (MAPE) ranged from 3.928 to 6.662, mean bias error (MBE) ranged from -0.089 to -0.003, while root mean square error (RMSE) ranged from 0.050 to 0.157 and R2 ranged from 0.86 to 0.966. ANN models provide a good approximation of the wind speed for all measurement stations, however, a tendency to underestimate is also obvious.

A Study on the Performance Improvement in Equalization of DTV using DCT HLMS DFE (DCT HLMS DFE를 이용한 DTV 등화 성능 개선 연구)

  • 김재욱;서종수
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.27-30
    • /
    • 2002
  • 본 논문은 8VSB 방식의 디지털 지상파 TV 시스템에서 수신 채널 등화기의 수렴속도와 MSE(Mean Square Error) 성능을 개선하기 위하여 DCT HLMS DFE(Discrete Cosine Transform Hierarchical Least Mean Square)를 제안한다. 즉, 다중경로 수신 환경에서 수신 신호의 왜곡 및 지연에 따른 입력 데이터에 대한 고유값 확산을 감소하기 위하여 DCT와 전력추정 알고리즘을 사용하고 또한, LMS(Least Mean Square) DFE를 계층적 구조의 서브필터로 변형함으로써 수신 데이터상관 행렬의 고유값 범위를 줄인다. 전산모의 실험 결과 제안한 DCT HLMS DFE는 ATTC(Advanced Television Test Center)가 제시한 디지털 지상파 TV 방송 채널 중 A 채널 하에서 기존의 LMS DFE 보다 수렴속도와 MSE 성능이 개선됨을 알 수 있다.

  • PDF

A Fuzzy Variable Step Size LMS Algorithm for Adaptive Antennas in CDMA Systems

  • Su, Pham-Van;Tuan, Le-Minh;Kim, Jewoo;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.518-522
    • /
    • 2002
  • This paper proposes a new application of Fuzzy logic to Variable Step Size Least Mean Square (VS-LMS) adaptive beamforming algorithm in CDMA systems. The proposed algorithm adjusts the step size of the Least Mean Square (LMS) by using the application of Fuzzy logic in which the increase or decrease of step size depends on the fuzzy inference results of the Mean Square Error (MSE). Computer simulation results show that the proposed algorithm has a better capacity of tracking compared with the conventional LMS algorithms and other variable step size LMS algorithms.

  • PDF

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

Comparison of Channel Estimation Schemes for Digital Broadcasting System in a Mobile Environment (이동 환경에서 디지털 방송 시스템을 위한 채널 추정 기법의 성능 비교)

  • Kim, Ki-Nam;Kim, Jin-Ho;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • In this paper, the performances of various channel estimation schemes for DVB-H system are investigated. The linear interpolation, the second order interpolation, the cubic spline interpolation, and the time-domain interpolation, which are used in frequency domain, are chosen as the channel estimation schemes. We derived the performances of Mean Square Error (MSE), Bit Error Rate (BER), and the complexity of calculation in Rayleigh and Rician fading channel through computer simulations. From the simulation results, the cubic spline interpolation shows the best performance under high $E_b/N_0$ environments.

  • PDF

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

The Mutual Information for Bit-Linear Linear-Dispersion Codes (BLLD 부호의 Mutual Information)

  • Jin, Xiang-Lan;Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.958-964
    • /
    • 2007
  • In this paper, we derive the relationship between the bit error probability (BEP) of maximum a posteriori (MAP) bit detection and the bit minimum mean square error (MMSE), that is, the BEP is greater than a quarter of the bit USE and less than a half of the bit MMSE. By using this result, the lower and upper bounds of the derivative of the mutual information are derived from the BEP and the lower and upper bounds are easily obtained in the multiple-input multiple-output (MIMO) communication systems with the bit-linear linear-dispersion (BLLD) codes in the Gaussian channel.

Sensitivity Analysis for Operation a Reservoir System to Hydrologic Forecast Accuracy (수문학적 예측의 정확도에 따른 저수지 시스템 운영의 민감도 분석)

  • Kim, Yeong-O
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.855-862
    • /
    • 1998
  • This paper investigates the impact of the forecast error on performance of a reservoir system for hydropower production. Forecast error is measured as th Root Mean Square Error (RMSE) and parametrically varied within a Generalized Maintenance Of Variance Extension (GMOVE) procedure. A set of transition probabilities are calculated as a function of the RMSE of the GMOVE procedure and then incorporated into a Bayesian Stochastic Dynamic Programming model which derives monthly operating policies and assesses their performance. As a case study, the proposed methodology is applied to the Skagit Hydropower System (SHS) in Washington state. The results show that the system performance is a nonlinear function of RMSE and therefor suggested that continued improvements in the current forecast accuracy correspond to gradually greater increase in performance of the SHS.

  • PDF

Wastewater Treatment Plant Data Analysis Using Neural Network (신경망 분석을 활용한 하수처리장 데이터 분석 기법 연구)

  • Seo, Jeong-sig;Kim, Tae-wook;Lee, Hae-kag;Youn, Jong-ho
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.555-567
    • /
    • 2022
  • With the introduction of the tele-monitoring system (TMS) in South Korea, monitoring of the concentration of pollutants discharged from nationwide water quality TMS attachments is possible. In addition, the Ministry of Environment is implementing a smart sewage system program that combines ICT technology with wastewater treatment plants. Thus, many institutions are adopting the automatic operation technique which uses process operation factors and TMS data of sewage treatment plants. As a part of the preliminary study, a multilayer perceptron (MLP) analysis method was applied to TMS data to identify predictability degree. TMS data were designated as independent variables, and each pollutant was considered as an independent variables. To verify the validity of the prediction, root mean square error analysis was conducted. TMS data from two public sewage treatment plants in Chungnam were used. The values of RMSE in SS, T-N, and COD predictions (excluding T-P) in treatment plant A showed an error range of 10%, and in the case of treatment plant B, all items showed an error exceeding 20%. If the total amount of data used MLP analysis increases, the predictability of MLP analysis is expected to increase further.

A comparison study on the estimation of the relative risk for the unemployed rate in small area (소지역의 실업률에 대한 상대위험도의 추정에 관한 비교연구)

  • Park, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.349-356
    • /
    • 2009
  • In this study, we suggest the estimation method of the relative risk for the unemployment statistics of a small area such as si, gun, gu in Korea. The considered method are the usual pooled estimator, weighted estimator with the inverse of log-variance as weights, and the Jackknife estimator. And we compare with the efficiency of the three estimators by estimating the bias and mean square errors using real data from the 2002 Economically Active Population Survey of Gyeonggi-do. We compute the unemployed rate of male and female in small areas, and then estimate the common relative risk for the unemployed rate between male and female. Also, the stability and reliability of the three estimators for the common relative risk was evaluated using the RB(relative bias) and the RRMSE(relative root mean square error) of these estimators. Finally, the Jackknife estimator turned out to be much more efficient than the other estimators.

  • PDF