• Title/Summary/Keyword: mean-shift algorithm

Search Result 141, Processing Time 0.029 seconds

Approximate Front Face Image Detection Using Facial Feature Points (얼굴 특징점들을 이용한 근사 정면 얼굴 영상 검출)

  • Kim, Su-jin;Jeong, Yong-seok;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.675-678
    • /
    • 2018
  • Since the face has a unique property to identify human, the face recognition is actively used in a security area and an authentication area such as access control, criminal search, and CCTV. The frontal face image has the most face information. Therefore, it is necessary to acquire the front face image as much as possible for face recognition. In this study, the face region is detected using the Adaboost algorithm using Haar-like feature and tracks it using the mean-shifting algorithm. Then, the feature points of the facial elements such as the eyes and the mouth are extracted from the face region, and the ratio of the two eyes and degree of rotation of the face is calculated using their geographical information, and the approximate front face image is presented in real time.

  • PDF

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.

Detecting and Counting People system based on Vision Sensor (비전 센서 기반의 사람 검출 및 계수 시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • The number of pedestrians is considered essential information which can be used to control a person who makes a entrance or a exit into a building. The number of pedestrians, also, can be used to help to manage pedestrian traffic and the volume of pedestrian flow within the building. Due to the fact there is incorrect detection by occluded, shadows, and illumination, however, difficulty can arise in existing system which is for detection and counts of a person who makes a entrance or a exit into a building. In this paper, it is minimized that the change of illumination and the effect of shadow through the transmitted image from camera which is created and processed with great adaptability. The accuracy of the calculations can be increase as well by using Kalman Filter and Mean-Shift Algorithm in order to avoid overlapped counts. As a result of the test, it is proved that the count method that shows the accuracy of 95.4% should be effective for detection and counts.

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.

A study on the speed control of the step motor for driving face-tracking camera (얼굴추적 카메라 구동에 사용된 스텝모터의 속도제어에 관한 연구)

  • Lee, J.B.;Sung, H.K.;Kim, Y.O.;Jeong, J.H.;Bom, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.230-232
    • /
    • 2001
  • The camera system we researched has two stepping motors for the pan and tilt operation, and the human face tracking algorithm. Recently, this kind of the camera is used in PC communication, telecommunication vision meeting and tele-lecture. This paper discusses the smooth speed control method of this camera when the face is moved to up, down, left and right direction. We used a mean shift algorithm for the face-tracking, proposed the speed control algorithm using a fuzzy logic and certified this characteristics with the experiment.

  • PDF

Optimized Operation of Dual-Active-Bridge DC-DC Converters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads

  • Jiang, Li;Sun, Yao;Su, Mei;Wang, Hui;Dan, Hanbing
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • It is usually difficult for dual-active-bridge (DAB) dc-dc converters to operate efficiently at light loads. This paper presents an in-depth analysis of a DAB with triple-phase-shift (TPS) control under the light load condition to overcome this problem. A kind of operating mode which is suitable for light load operation is analyzed in this paper. First, an analysis of the zero-voltage-switching (ZVS) constraints for the DAB converter has been carried out and a reasonable dead-band setting method has been proposed. Secondly, the basic operating characteristics of the converter are analyzed. Third, under the condition of satisfying the ZVS constraints, both the reactive power and the root mean square (RMS) value of the current are simultaneously minimized and a particle swarm optimization (PSO) algorithm is employed to analyze and solve this optimization problem. Lastly, both simulations and experiments are carried out to verify the effectiveness of the proposed method. The experimental results show that the converter can effectively achieve ZVS and improved efficiency.

A Method for Tree Image Segmentation Combined Adaptive Mean Shifting with Image Abstraction

  • Yang, Ting-ting;Zhou, Su-yin;Xu, Ai-jun;Yin, Jian-xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1424-1436
    • /
    • 2020
  • Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.

Optimum Nonseparable Filter Bank Design in Multidimensional M-Band Subband Structure

  • Park, Kyu-Sik;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.24-32
    • /
    • 1996
  • A rigorous theory for modeling, analysis, optimum nonseparable filter bank in multidimensional M-band quantized subband codec are developed in this paper. Each pdf-optimized quantizer is modeled by a nonlinear gain-plus-additive uncorrelated noise and embedded into the subband structure. We then decompose the analysis/synthesis filter banks into their polyphase components and shift the down-and up-samplers to the right and left of the analysis/synthesis polyphase matrices respectively. Focusing on the slow clock rate signal between the samplers, we derive the exact expression for the output mean square quantization error by using spatial-invariant analysis. We show that this error can be represented by two uncorrelated components : a distortion component due to the quantizer gain, and a random noise component due to fictitious uncorrelated noise at the uantizer. This mean square error is then minimized subject to perfect reconstruction (PR) constraints and the total bit allocation for the entire filter bank. The algorithm gives filter coefficients and subband bit allocations. Numerical design example for the optimum nonseparable orthonormal filter bank is given with a quincunx subsampling lattice.

  • PDF

Multilayer Stereo Image Matching Based upon Phase-Magnitude an Mean Field Approximation

  • Hong Jeong;Kim, Jung-Gu;Chae, Myoung-Sik
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.79-88
    • /
    • 1997
  • This paper introduces a new energy function, as maximum a posteriori(MAP) estimate of binocular disparity, that can deal with both random dot stereo-gram(RDS) and natural scenes. The energy function uses phase-magnitude as features to detect only the shift for a pair of corrupted conjugate images. Also we adopted Fleet singularity that effectively detects unstable areas of image plant and thus eliminates in advance error-prone stereo mathcing. The multi-scale concept is applied to the multi laser architecture that can search the solutions systematically from coarse to fine details and thereby avoids drastically the local minima. Using mean field approximation, we obtained a compact representation that is suitable for fast computation. In this manner, the energy function satisfies major natural constraints and requirements for implementing parallel relaxation. As an experiment, the proposed algorithm is applied to RDS and natural stereo images. As a result we will see that it reveals good performance in terms of recognition errors, parallel implementation, and noise characteristics.

  • PDF