Journal of the Institute of Electronics Engineers of Korea SP
/
v.49
no.1
/
pp.1-10
/
2012
In this paper, we propose a new class of color histogram model suitable for object tracking. In addition to the pixel count, each bin of the proposed model also contains the spatial mean and the average value of the pixels located at a certain distance from the mean location of the bin. Using the proposed color histogram model, we derive a mean shift procedure using the modified Bhattacharyya distance. Unlike most mean shift based methods, our algorithm performs well even when the object being tracked shares similar colors with the background. Experimental results demonstrate improved tracking performance over existing methods.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.4
/
pp.21-29
/
2011
At existing skin detection methods using skin color information defined based on the prior knowldege, threshold value to be used at the stage of dividing the backround and the skin region was decided on a subjective point of view through experiments. Also, threshold value was selected in a passive manner according to their background and illumination environments in these existing methods. These existing methods displayed a drawback in that their performance was fully influenced by the threshold value estimated through repetitive experiments. To overcome the drawback of existing methods, this paper propose a skin region detection method using a histogram approximation based on the mean shift algorithm. The proposed method is to divide the background region and the skin region by using the mean shift method at the histogram of the skin-map of the input image generated by the comparison of the similarity with the standard skin color at the CbCr color space and actively finding the maximum value converged by brightness level. Since the histogram has a form of discontinuous function accumulated according to the brightness value of the pixel, it gets approximated as a Gaussian Mixture Model (GMM) using the Bezier Curve method. Thus, the proposed method detects the skin region by using the mean shift method and actively finding the maximum value which eventually becomes the dividing point, not by using the manually selected threshold value unlike other existing methods. This method detects the skin region high performance effectively through experiments.
영상내의 문자 정보는 색인에 필요한 유용한 정보를 제공하므로, 이를 이용한 멀티미디어 데이터의 인덱싱기법이 최근 많이 연구되고 있다. 본 논문은 mean shift 알고리즘을 이용한 텍스춰 기반의 문자 영역 추출 방법을 제안한다. 다양한 크기와 모양의 문자에 적응성을 가지는 필터를 만들기 위해 신경망을 이용한다. 문자 영역의 위치와 크기는 문자 확률 영상상에서 mean shift 알고리즘을 이용하여, 국소 탐색만으로 별도의 후처리 과정 없이 기존의 문자 추출 방법보다 우수한 성능을 보인다.
To deal with the problems of occlusion, pose variations and illumination changes in the object tracking system, a regression model weighted multi-templates mean-shift (MS) algorithm is proposed in this paper. Target templates and occlusion templates are extracted to compose a multi-templates set. Then, the MS algorithm is applied to the multi-templates set for obtaining the candidate areas. Moreover, a regression model is trained to estimate the Bhattacharyya coefficients between the templates and candidate areas. Finally, the geometric center of the tracked areas is considered as the object's position. The proposed algorithm is evaluated on several classical videos. The experimental results show that the regression model weighted multi-templates MS algorithm can track an object accurately in terms of occlusion, illumination changes and pose variations.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.44
no.1
/
pp.56-63
/
2007
In this paper, an eye tracking method is presented using a neural network (NN) and mean-shift algorithm that can accurately detect and track user's eyes under the cluttered background. In the proposed method, to deal with the rigid head motion, the facial region is first obtained using skin-color model and con-nected-component analysis. Thereafter the eye regions are localized using neural network (NN)-based tex-ture classifier that discriminates the facial region into eye class and non-eye class, which enables our method to accurately detect users' eyes even if they put on glasses. Once the eye region is localized, they are continuously and correctly tracking by mean-shift algorithm. To assess the validity of the proposed method, it is applied to the interface system using eye movement and is tested with a group of 25 users through playing a 'aligns games.' The results show that the system process more than 30 frames/sec on PC for the $320{\times}240$ size input image and supply a user-friendly and convenient access to a computer in real-time operation.
Kernel-based mean-shift object tracking has gained more interests nowadays, with the aid of its feasibility of reliable real-time implementation of object tracking. This algorithm calculates the best mean-shift vector based on the color histogram similarity between target model and target candidate models, where the color histograms are usually produced after uniform color-space quantization for the implementation of real-time tracker. However, when the image of target model has a reduced contrast, such uniform quantization produces the histogram model having large values only for a few histogram bins, resulting in a reduced accuracy of similarity comparison. To solve this problem, a non-uniform quantization algorithm has been proposed, but it is hard to apply to real-time tracking applications due to its high complexity. Therefore, this paper proposes a fast non-uniform color-space quantization method using the histogram equalization, providing an adjusted histogram distribution such that the bins of target model histogram have as many meaningful values as possible. Using the proposed method, the number of bins involved in similarity comparison has been increased, resulting in an enhanced accuracy of the proposed mean-shift tracker. Simulations with various test videos demonstrate the proposed algorithm provides similar or better tracking results to the previous non-uniform quantization scheme with significantly reduced computation complexity.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.9
no.3
/
pp.166-171
/
2009
In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.6
/
pp.731-736
/
2008
In this paper, we propose the movement detection algorithm by using virtual skeleton model. To do this, first, we eliminate error values by using conventioanl method based on RGB color model and eliminate unnecessary values by using the HSI color model. Second, we construct the virtual skeleton model with skeleton information of 10 peoples. After matching this virtual model to original image, we extract the real head silhouette by using the proposed circle searching method. Third, we extract the object by using the mean-shift algorithm and this head information. Finally, we validate the applicability of the proposed method through the various experiments in a complex environments.
Background generation is very important for accurate object tracking in video surveillance systems. Traditional background generation techniques have some problems with non-moving objects for longer periods. To overcome this problem, we propose a newbackground generation method using mean-shift and Fast Marching Method (FMM) to use pixel information along temporal and spatial dimensions. The mode of pixel value density along time axis is estimated by mean-shift algorithm and spatial information is evaluated by FMM, and then they are used together to generate a desirable background in the existence of non-moving objects during longer period. Experimental results show that our proposed method is more efficient than the traditional method.
본 논문에서는 곡물이나 광석 등의 원료들 중에서 양품 및 불량품을 검출하기 위해, Color CCD 카메라로 촬영한 원료영상에서 Mean-Shift 클러스터링 알고리즘과 단계별 병합 방법을 제안하고 있다. 먼저 원료 학습 영상에서 배경을 제거하고 영상 색 분포정도를 기준으로 모폴로지를 이용하여 영상의 전경맵을 얻는다. 전경맵 영상에 대해서 Mean-Shift 군집화 알고리즘을 적용하여 영상을 N개의 군집으로 나누고, 단계별로 위치 근접성, 색상대푯값 유사성을 비교하여 비슷한 군집끼리 통합한다. 이렇게 통합된 원료 객체는 영상채널마다의 연관관계를 반영할 수 있도록 RG/GB/BR의 2차원 컬러분포도로 표현한다. 원료 객체별로 변환된 2차원 컬러 분포도에서 분포의 주성분의 기울기와 타원들을 생성한다. 객체별 분포 타원은 테스트 원료 영상데이터에서 양품과 불량품을 검출하는 임계값이 된다. 본 논문에서 제안한 방법으로 다양한 원료영상에 실험한 결과, 기존 선별방식에 비해 사용자의 인위적 조작이 적고 정확한 원료 선별 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.