• 제목/요약/키워드: mean-shift algorithm

Search Result 141, Processing Time 0.025 seconds

Small Target Detecting and Tracking Using Mean Shifter Guided Kalman Filter

  • Ye, Soo-Young;Joo, Jae-Heum;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.187-192
    • /
    • 2013
  • Because of the importance of small target detection in infrared images, many studies have been carried out in this area. Using a Kalman filter and mean shift algorithm, this study proposes an algorithm to track multiple small moving targets even in cases of target disappearance and appearance in serial infrared images in an environment with many noises. Difference images, which highlight the background images estimated with a background estimation filter from the original images, have a relatively very bright value, which becomes a candidate target area. Multiple target tracking consists of a Kalman filter section (target position prediction) and candidate target classification section (target selection). The system removes error detection from the detection results of candidate targets in still images and associates targets in serial images. The final target detection locations were revised with the mean shift algorithm to have comparatively low tracking location errors and allow for continuous tracking with standard model updating. In the experiment with actual marine infrared serial images, the proposed system was compared with the Kalman filter method and mean shift algorithm. As a result, the proposed system recorded the lowest tracking location errors and ensured stable tracking with no tracking location diffusion.

Mean Shift Based Object Tracking with Color and Spatial Information (칼라와 공간 정보를 이용한 평균 이동에 기반한 물체 추적)

  • An, Kwang-Ho;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1973-1974
    • /
    • 2006
  • The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local maxima of a similarity measure between the color histograms of the target and candidate image. However, the mean shift tracking algorithm using only color histograms has a serious defect. It doesn't use the spatial information of the target. Thus, it is difficult to model the target more exactly. And it is likely to lose the target during the occlusions of other objects which have similar color distributions. To deal with these difficulties we use both color information and spatial information of the target. Our proposed algorithm is robust to occlusions and scale changes in front of dynamic, unstructured background. In addition, our proposed method is computationally efficient. Therefore, it can be executed in real-time.

  • PDF

Bilateral Filtering-based Mean-Shift for Robust Face Tracking (양방향 필터 기반 Mean-Shift 기법을 이용한 강인한 얼굴추적)

  • Choi, Wan-Yong;Lee, Yoon-Hyung;Jeong, Mun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1319-1324
    • /
    • 2013
  • The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the target and candidate image. However, it is sensitive to the noises due to objects or background having similar color distributions. In addition, occlusion by another object often causes a face region to change in size and position although a face region is a critical clue to perform face recognition or compute face orientation. We assume that depth and color are effective to separate a face from a background and a face from objects, respectively. From the assumption we devised a bilateral filter using color and depth and incorporate it into the mean-shift algorithm. We demonstrated the proposed method by some experiments.

An Optical CDMA Code Acquisition Algorithm Using Multiple Thresholds (여러 개의 문턱값을 이용한 Optical CDMA 부호 획득 알고리즘)

  • Chong, Da-Hae;Lee, Young-Yoon;Ahn, Sang-Ho;Lee, Seong-Ro;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1075-1081
    • /
    • 2008
  • In this paper, we propose a code acquisition algorithm using optical orthogonal code (OOC) for optical code division multiple access (CDMA) systems. Generally, a good code acquisition algorithm offers short mean acquisition time (MAT). The conventional multiple-shift (MS) algorithm consists of two stages and has shorter MAT than that of well-known serial-search (SS) algorithm. This paper proposes a novel code acquisition algorithm called enhanced multiple-shift (EMS) algorithm. By using multiple thresholds, the proposed EMS algorithm provides shorter MAT compared with that of the MS algorithm. The simulation results show that the EMS algorithm presents shorter MAT compared with the MS algorithm in both single-user and multi-user environments.

Wine Label Detection Using Saliency Map and Mean Shift Algorithm (중요도 맵과 Mean Shift 알고리즘을 이용한 와인 라벨 검출)

  • Chen, Yan-Juan;Lee, Myung-Eun;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.384-385
    • /
    • 2011
  • 본 논문은 중요도 맵과 Mean Shift 알고리즘을 이용하여 모바일 폰 영상 내의 와인 라벨 검출 방법을 제안한다. Mean Shift 알고리즘은 비모수적 클러스터링 기술로 클러스터의 수에 대한 사전 지식이 없이도 클러스터링이 가능한 알고리즘인데 실행 시간이 많이 필요한 단점이 있다. 이러한 문제를 해결하기 위해서 입력 칼라 와인 영상에 Saliency Map을 먼저 적용하고 영상의 두드러진 영역을 찾는다. 다음으로 Mean Shift 알고리즘을 이용한 분할 결과에서 얻은 칼라 마스크를 따라 빈도가 가장 높은 칼라 영역을 찾고 와인 라벨 영역을 검출한다. 실험결과를 통하여 제안된 방법을 모바일 폰을 이용하여 획득된 다양한 와인 영상의 라벨 영역을 효율적으로 검출할 수 있음을 볼 수 있다.

Multi-Small Target Tracking Algorithm in Infrared Image Sequences (적외선 연속 영상에서 다중 소형 표적 추적 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.

Clothing Color Analysis Techniques using Bilateral Filter and Mean-Shift Algorithm (Bilateral 필터와 Mean-Shift 알고리즘을 이용한 의상 색상 분석기법)

  • Kim, Hye-Min;Jeong, Chang-Seong
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1413-1415
    • /
    • 2015
  • 본 논문에서 우리는 의상영역의 유사성을 검사 시 색상분석에 있어 정확도를 향상시키기 위해 Bilateral 필터와 Mean-Shift 알고리즘을 적용하였다. 본 연구의 평가부분에서 필터를 적용한 영상이 의상영역의 구김이나 빛에 의한 영향이 필터를 적용하지 않은 영상보다 적다는 것을 실험을 통해 증명한다.

Inforamtion Application for The blind people (시각 장애인을 위한 안내정보 어플리케이션)

  • Shin, Eun-bi;Roh, Tae-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.358-359
    • /
    • 2018
  • In this paper, opencv and android studio are used to distinguish between objects ahead of the blind. When the movement is detected in a positive direction in connection with the camera of the smartphone, the user is informed that the part of the camera is being rabelified and continues to track using the mean shift algorithm. A C ++ program based on OpenCV-based was used for real-time motion observation and the application will be produced by android studio. As a result of the study, objects that move with Labeling are identified and the box area is specified using the mean shift algorithm to move the box along with the object to track objects in real time.

  • PDF

Text Extraction in HIS Color Space by Weighting Scheme

  • Le, Thi Khue Van;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • A robust and efficient text extraction is very important for an accuracy of Optical Character Recognition (OCR) systems. Natural scene images with degradations such as uneven illumination, perspective distortion, complex background and multi color text give many challenges to computer vision task, especially in text extraction. In this paper, we propose a method for extraction of the text in signboard images based on a combination of mean shift algorithm and weighting scheme of hue and saturation in HSI color space for clustering algorithm. The number of clusters is determined automatically by mean shift-based density estimation, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. Weighting scheme of hue and saturation is used for formulation a new distance measure in cylindrical coordinate for text extraction. The obtained experimental results through various natural scene images are presented to demonstrate the effectiveness of our approach.

  • PDF

A Study on Image inpainting using Mean-Shift Algorithm (Mean-Shift Algorithm을 이용한 Image inpainting에 관한 연구)

  • Gong, Jae-Woong;Jung, Jae-Jin;Hwang, Eui-Sung;Kim, Tae-Hyoung;Kim, Doo-Yung
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.49-52
    • /
    • 2006
  • 오늘날 컴퓨터의 발달과 인터넷의 확산으로 멀티미디어 컨텐츠의 보급이 급격히 확대되고 있으며, 이들 컨텐츠에는 원거리 화상회의, 감시시스템, 주문형 비디오(VOD), 주문형 뉴스(NOD), 디지털 편집 시스템 등 동영상이 포함되어 있다. 이처럼 동영상은 정보교환과 정보표현의 매개물로서 중요한 역할을 한다. 그러나 이와 같은 동영상은 노이즈나 전송과정 중 발생하는 문제 등으로 인해 항상 좋은 품질을 보장되지 않는다. 이런 훼손된 영상을 원영상으로 복원하거나 사용자가 제거 혹은 복원하고자 하는 영역을 지정 처리함으로서 다양한 정보를 획득할 수 있다. 일반적으로 pc에서 사용되어지는 대부분의 동영상은 $15fps{\sim}30fps$이다. 대부분의 동영상 편집 기술은 각각의 frame을 추출하여 수동적으로 처리하므로 비용과 시간이 많이 든다. 이런 단점을 해결하기 위해 여러 방법이 기존에 시도되고 있다. 제거 혹은 복원하고자 하는 영역을 전 frame에서 처리하기 위해 움직임 검출 및 추적기법이 사용되며, 제거 혹은 복원하기 위해 median filtering, image inpainting 처리 방법들이 있다. 본 연구에서는 사용자에 의해 미리 정의된 바운딩 박스내의 객체를 추적하여 객체의 중심값을 찾는 mean-shift algorithm을 이용하여 움직이는 객체를 추적하였고 image Inpainting algorithm을 이용하여 훼손된 영역을 복원하거나 제거하고자 하는 객체를 제거하였다.

  • PDF