• 제목/요약/키워드: mean-shift algorithm

검색결과 141건 처리시간 0.025초

Mean Shift 알고리즘을 활용한 경계선 검출의 향상 (Improvement of Edge Detection Using Mean Shift Algorithm)

  • 신성윤;이창우;이양원
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.59-64
    • /
    • 2009
  • 경계선 검출은 항상 원 이미지의 노이즈에 의해 영향을 받으므로 사전에 노이즈들을 제거하는 방법들이 필요하다. 그리고 Mean Shift 알고리즘은 이러한 목적에 알맞은 smooth 함수를 가지고 있고, 그래서 중요하지 않은 정보와 노이즈에 민감한 부분들을 점차 제거하는 방법들을 택하고 있다. 우선 Canny 알고리즘을 사용하여 객체의 윤곽선을 추출하는데 초점을 맞추었다. 그리고 알고리즘을 테스트 하고 이전의 단독 Canny 알고리즘보다 우수한 결과를 얻었다. 따라서 Mean Shift 알고리즘과 Canny 알고리즘이 조합된 방법은 경계선 검출 처리에 적당함을 말한다.

실시간 객체 추적을 위한 Condensation 알고리즘과 Mean-shift 알고리즘의 결합 (Integration of Condensation and Mean-shift algorithms for real-time object tracking)

  • 조상현;강행봉
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.273-282
    • /
    • 2005
  • 실시간 객체 추적(Real-time object tracking)은 비디오 감시 시스템, 비전 기반 네비게이터와 같은 비전 응용 산업이 발달하면서 그 중요성이 더해지고 있는 분야이다. 객체 추적을 위해 많이 이용되고 있는 알고리즘으로 Mean-shift와 Condensation 알고리즘이 있다. Mean-shift 알고리즘을 기반으로 한 객체 추적 알고리즘은 구현이 간단하고, 적은 계산 복잡도를 갖는 장점이 있다. 따라서 실시간 객체 추적 시스템에 적합하다고 할 수 있지만, 지역 모드(Local mode)로 수렴하는 특성으로 인해 복잡한 환경(Cluttered environment)에서는 좋은 성능을 나타내지 못하는 단점을 가지고 있다. 반면, 여러 개의 후보들을 이용해 객체의 위치를 추정하는 Condensation 추적 알고리즘은 복잡한 환경에서 특정 객체를 추적하는데 많이 사용된다. 하지만 Condensation 알고리즘을 기반으로 한 추적 알고리즘은 정확한 추적을 하기 위해서 복잡도가 높은 객체 모델과 많은 수의 후보가 요구된다. 따라서 높은 복잡도를 갖게 되고, 이것으로 인해 복잡한 환경에서는 실시간 구현이 어렵다는 단점을 갖게 된다. 본 논문에서는, 복잡한 환경에서 실시간 객체 추적에 적합하도록 Condensation 알고리즘과 Mean-shift 알고리즘을 결합해서, 적은 수의 후보들을 이용하는 모델을 제안한다. 적은 수의 후보들을 이용하더라도, Mean-shift 알고리즘을 이용해 보다 높은 유사도를 가지는 후보들만을 이용함으로써, Condensation 알고리즘이나 Mean-shift 알고리즘만을 이용할 때보다 더 나은 성능을 얻을 수 있었다.

검출된 얼굴 영역 히스토그램 재조정을 통한 개선된 실시간 평균이동 얼굴 추적 방식 (Improved Real-Time Mean-Shift Face Tracking by Readjusting Detected Face Region Histogram)

  • 김귀식;이재성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.195-198
    • /
    • 2013
  • 관심 객체의 인식 및 추적은 컴퓨터 비전 분야의 중요한 영역이다. 본 논문에서는 기존의 Mean-Shift 알고리즘의 고질적인 문제인 유사 히스토그램 분포를 가지는 객체 간 혼동 현상을 해결하는 방법을 제안한다. 피부색 필터링, 얼굴 인식, Mean-Shift 순으로 진행되는 처리 과정에서 각각의 알고리즘 블럭은 다음 진행 알고리즘의 성능을 높이는데 기여한다. 연산 오버헤드가 발생하지 않도록 추적 영역과 유사한 히스토그램 분포를 가지는 영역이 겹쳐질 때에만 화이트 픽셀의 수를 고려해 Viola-Jones 알고리즘을 실행하여 간단한 산술 연산을 통해 Mean-Shift의 수렴성을 높인다. 실험 결과 화이트 픽셀 수가 Mean-Shift의 탐색 반경에서 78%이상이 되면 Viola-Jones 알고리즘이 수행되도록 설정하였을 때 얼굴 영역 인식이 되는 경우에 한해서 객체 추적은 100% 성공하였다.

  • PDF

Hue/Saturation 영상의 적응적 선택을 이용한 강인한 Mean-Shift Tracking (Robust Mean-Shift Tracking Using Adoptive Selection of Hue/Saturation)

  • 박한동;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.579-582
    • /
    • 2015
  • Mean-Shift 알고리즘은 객체 모델과 객체 후보 영상에서 색상 히스토그램 분포의 유사도를 이용하여 객체를 추적하는 강인한 알고리즘이다. 그러나 색상정보를 이용한 Mean-Shift 알고리즘은 객체와 배경이 비슷한 색상 분포를 가질 경우에 추적에 실패할 수 있는 단점이 있다. 이러한 단점을 보완하기 위해 배경과 객체를 분리할 정보를 색상(hue)과 채도(saturation) 영상에서 각각 4비트의 bit-plane을 조합한 새로운 영상을 사용한 강인한 객체 추적 알고리즘을 구현한다.

  • PDF

색상변화를 갖는 객체추적 알고리즘 (An Algorithm for Color Object Tracking)

  • 황인택;최광남
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.827-837
    • /
    • 2007
  • 기존의 색상 기반의 Mean Shift 알고리즘을 이용한 객체추적 알고리즘은 초기 색상 정보가 사라질 경우 정확한 객체추적을 수행할 수 없다. 본 논문은 객체의 색상이 변할 때 색상 정보를 변경하여 정확히 추적하는 알고리즘을 제안한다. 제안 알고리즘은 현재의 위치를 중심으로 다음 객체 위치에 해당하는 밀도가 가장 높은 위치를 Mean Shift알고리즘으로 구하고, 바꿔 색상 정보를 변경하는 반복적인 기법을 사용한다. 이를 통해 처음 설정한 객체의 색상이 바뀌거나 사라지더라도 정확한 객체추적을 할 수 있게 되었다. 본 논문에서는 제안 알고리즘을 구현하고, 실험 결과로 성능을 입증한다.

  • PDF

Mean Shift 알고리즘과 Canny 알고리즘을 이용한 에지 검출 향상 (Using mean shift and self adaptive Canny algorithm enhance edge detection effect)

  • ;신성윤;이양원
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.207-210
    • /
    • 2009
  • Edge detection is an important process in low level image processing. But many proposed methods for edge detection are not very robust to the image noise and are not flexible for different images. To solve the both problems, an algorithm is proposed which eliminate the noise by mean shift algorithm in advance, and then adaptively determine the double thresholds based on gradient histogram and minimum interclass variance, With this algorithm, it can fade out almost all the sensitive noise and calculate the both thresholds for different images without necessity to setup any parameter artificially, and choose edge pixels by fuzzy algorithm.

  • PDF

에지 추출 향상을 위한 Mean Shift 알고리즘의 이용 (Using Mean Shift Algorithm Enhance Edge Detection Effect)

  • ;신성윤;이양원
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.211-214
    • /
    • 2009
  • Edge detection always influenced by noise belong to the original image, therefore need use some methods to sort this issue, mean shift algorithm has the smooth function which suit for the edge detection purpose, so adopted to fade out the unimportant information, and the sensitive noise portions. After this section, use the Canny algorithm to pick up the contour of the objects we focus on, meanwhile select the Soble operator that has the orientation attribute to support the method work well. In final, take experiment and get the perfect result we wanted, make sure this method make sense and better than the sole Edge detection algorithm,

  • PDF

Mean-Shift Object Tracking with Discrete and Real AdaBoost Techniques

  • Baskoro, Hendro;Kim, Jun-Seong;Kim, Chang-Su
    • ETRI Journal
    • /
    • 제31권3호
    • /
    • pp.282-291
    • /
    • 2009
  • An online mean-shift object tracking algorithm, which consists of a learning stage and an estimation stage, is proposed in this work. The learning stage selects the features for tracking, and the estimation stage composes a likelihood image and applies the mean shift algorithm to it to track an object. The tracking performance depends on the quality of the likelihood image. We propose two schemes to generate and integrate likelihood images: one based on the discrete AdaBoost (DAB) and the other based on the real AdaBoost (RAB). The DAB scheme uses tuned feature values, whereas RAB estimates class probabilities, to select the features and generate the likelihood images. Experiment results show that the proposed algorithm provides more accurate and reliable tracking results than the conventional mean shift tracking algorithms.

  • PDF

평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적 (Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm)

  • 김종훈;조겸래;이대우
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.

실시간 영상에서 물체의 색/모양 정보를 이용한 움직임 검출 알고리즘 구현 (The motion estimation algorithm implemented by the color / shape information of the object in the real-time image)

  • 김남우;허창우
    • 한국정보통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.2733-2737
    • /
    • 2014
  • 실시간 영상을 이용하여 움직임 검출을 하는데 사용하는 배경 차영상 기법에 의한 움직임 및 변화 영역 검출 방법과 움직임 히스토리에 의한 움직임 검출법, 광류에 의한 움직임 검출법, 움직임 추적을 위한 추적하려는 물체의 히스토그램의 역투영을 이용하면서 물체의 중심점을 추적하는 MeanShift와 물체의 중심, 크기, 방향을 함께 추적하는 CamShift, Kalman 필터에 의한 움직임 추적 알고리즘 등이 있다. 본 논문에서는 물체의 색상과 모양 정보를 이용한 움직임 검출 알고리즘을 구현하고 검증하였다.