• Title/Summary/Keyword: mean water level

Search Result 629, Processing Time 0.026 seconds

A Study on Contents of Heavy Metal in Water, Soil, Rice and Urine of inhabitants Along the KUM River (금강 유역의 수중, 토양, 쌀 및 주민의 뇨중 중금속 함량에 관한 연구)

  • 이종섭;유일수
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 1992
  • Authors investigated the heavy metals in water, soil, rice and Urine of residents along the KUM river. Sample were analyzed by Varian Atomic absorption Spectrophotometer. The results obtained were as follows. 1. The Contents of cadmium and Lead in water were in the range of 0~2.15$\mu$g/l, 0~4.29$\mu$g/l, respectively. 2. The Contents of heavy metals in soil were in the range of 0.32~0.91mg/kg, 5.59~21.55mg/kg for Cd, Pb respectively. 3. Those in rice were in the range of 0.025~0.062mg/kg for Cd, Pb respectively. 4. The mean of Lead and Cadmium Concentration in Urine of residents of Munju Ri were 28.63$\mu$g/l and 1.66$\mu$g/l respectively, Those was also the highest level among the investigated group.

  • PDF

THE CASPIAN SEA LEVEL, DYNAMICS, WIND, WAVES AND UPLIFT OF THE EARTH'S CRUST DERIVED FROM SATELLITE ALTIMETRY

  • Lebedev, S.A.;Kostianoy, A.G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.973-976
    • /
    • 2006
  • The oscillations of the Caspian Sea level represent a result of mutually related hydrometeorological processes. The change in the tendency of the mean sea level variations that occurred in the middle 1970s, when the long-term level fall was replaced by its rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of the sea level changes represent an extremely important task. The aim of this presentation is to show the experience of application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height, water dynamics, as well as of uplift of the Earth’s crust in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay. Special attention is given to estimates of the Volga River runoff derived from satellite altimetry data. The work is based on the 1992-2005 TOPEX/Poseidon (T/P) and Jason-1 (J-1) data sets.

  • PDF

Effects of Wave-Current Interactions on 3-D Flow Fields in a River Mouth (하구에서 파랑-흐름 상호작용이 3차원 흐름특성에 미치는 영향)

  • Lee, Woo-Dong;Jeon, Ho-Seong;Park, Jong-Ryul;Hur, Dong-So
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-46
    • /
    • 2017
  • Most of the studies on the hydraulic characteristics of wave-current interaction have used 2-D hydraulic experiments or 2-D numerical simulations. However, it is difficult to understand the wave-current interaction found in actual estuaries using these. Therefore, a numerical water tank was constructed in this study to perform simulations involving a 3-D river mouth. The result showed a change in the water surface at the river mouth from the wave-current interaction. With an increase in the ratio ($V_c/C_i$) between the river current and wave celerity, the wave height and mean water level of the river increased at the wave and current meeting point. A higher $V_c/C_i$ caused a stronger wave-current interaction and increased the turbulence kinetic energy. Thus, the wave height attenuation became larger by the wave-current interaction with a higher $V_c/C_i$. In addition, it was possible to understand the flow characteristics in the vicinity of the river mouth as a result of the wave-current interaction using the mean flow and mean time-averaged velocity at the mid-cross section of river.

Seasonal Phosphorus Dynamics in a Forest Stream Water Following Different Harvests

  • Park, Byung Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.181-186
    • /
    • 2008
  • Even small changes in phosphorus concentrations in stream water could cause eutrophication because of very low level of phosphorus concentrations in natural waters. I investigated the impact of strip cut and clear cut on phosphorus concentrations in stream water at the Hubbard Brook Experimental Forest and investigated stream water phosphorus concentrations as a function of flow rate and season (as well as cutting history). Mean phosphate concentrations in the control (undisturbed forest) increased $1.9{\mu}g\;L^{-1}\;to\;2.6{\mu}g\;L^{-1}$, while strip cut treatment increased phosphate concentrations in stream water $2.2{\mu}g\;L^{-1}\;to\;3.7{\mu}g\;L^{-1}$ during the same period. There was no significant effect of clear cut treatment on phosphate concentrations in stream water. No relationships were found between discharge rate and phosphate concentrations, but the magnitude of fluctuation were increased during two decades in undisturbed forest: $1-5{\mu}g\;L^{-1}$ from 1963 to 1975 and $1-12{\mu}g\;L^{-1}$ from 1983 to 1995. Based on this study, forest harvests with buffer zone will not make a problem by imported phosphate to cause eutrophication in natural water.

Developing descriptive analysis protocol for gochujang: establishing optimal palate cleanser (고추장 묘사분석을 위한 프로토콜 개발: 입가심물질 중심으로)

  • Lee, Eun-Hye;Chung, Seo-Jin;Yu, Seon-Mi;Han, Kui-Jeong
    • Korean journal of food and cookery science
    • /
    • v.29 no.5
    • /
    • pp.489-500
    • /
    • 2013
  • This study was conducted to establish an effective palate cleanser when conducting descriptive analysis for gochujang products. In addition, descriptive analysis procedure for gochujang products was optimized. A generic descriptive analysis was performed on 4 types of gochujang samples varying in hot and spicy levels. The sensory attributes developed were 9 odors, 13 flavors, 4 texture and mouth feel attributes, and 4 appearance attributes. In order to select an effective palate cleanser for gochujang, 5 types of cleansers were tested (water, water+bread, water+cucumber, water+milk, water+cracker). Correct answering rate, significant numbers of product effect on sensory attributes, and the mean hot and spicy intensity values were considered to select the optimal palate cleanser. Results showed that as the hot & spicy level increased, red pepper odor and flavor significantly increased whereas umami taste intensity decreased. When comparing the efficiencies of various palate cleanser, the correct answer rates were the highest when warm water was used with either cucumber or cracker. Additionally, the attribute intensities were better differentiated between gochujang samples when cracker, white wheat bread, or cucumber were used. Overall, warm water with cucumber or cracker were shown to be the most effective cleansers.

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Acute and Chronic Ecotoxicity Assessment of Ambient and Effluent Water Discharged to the Lake Shihwa (시화호로 유입되는 지표수 및 방류수의 급·만성 생태독성평가)

  • Ji, Kyunghee;Jang, Shinhye;Kim, Youngsook;Kim, Eunjoo;Kim, Jiyoung;Seo, Eunjung;Park, Yoonsuk;Park, Sujung;Choi, Kyungho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.144-154
    • /
    • 2007
  • The acute and chronic toxicity of ambient and effluent water discharged to Lake Shihwa were investigated by using Vibrio fischeri, Daphnia magna and Oryzias latipes. Physicochemical characteristics including biochemical oxygen demand (BOD) and nine heavy metals in a total of 15 water samples were evaluated and were satisfied with relevant Korean Water Quality Standards (KWQS) except for Hg in one sample. Acute toxicity was observed in five samples collected from three sampling locations. When impacts on reproduction and growth after chronic exposure were evaluated with D. magna, all the samples showed significant chronic effects. Reproduction appeared relatively more sensitive endpoint. In 21 days chronic tests on O. latipes, survival, mean egg number per female per day, hatching success rate and time to hatch were affected by increasing sample concentration. The organ-level changes such as gonadosomatic index (GSI), and hepatosomatic index (HSI), and molecular biomarker of vitellogenin (Vtg) induction that evaluated with O. latipes increased as exposure concentrations increased. It is noteworthy that the samples that did not exceed the KWQS resulted in acute and chronic toxicities. The results suggested that numeric criteria based on physicochemical parameters may not be protective of aquatic ecosystem. Acute and chronic toxicity tests with organisms representing different trophic groups should be supplemented in order to provide adequate level of environmental protection.

A study on the variation of the Korean marine ecosystem through biodiversity attributes (생물다양성 특성 분석을 통한 우리나라 주변 해양생태계 변화 연구)

  • Jong Hee LEE;Young Il SEO;Sang Chul YOON;Heejoong KANG;Ji-Hoon CHOI;Min-Je CHOI;Jinwoo GIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.315-327
    • /
    • 2023
  • In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.

Determination of management water level for the storage and flood controls in the underflow type of multi-stage movable weir using artificial neural network (인공신경망을 이용한 다단 배치된 하단배출형 가동보의 저류 및 홍수 조절을 위한 관리수위 결정)

  • Lee, Ji Haeng;Han, Il Yeong;Choi, Heung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2017
  • The underflow type movable weirs were arranged in a multi-stage way along a reach at the Chiseong River, where flooding has been observed frequently. With management water level of the movable weirs the control effects of storage and flood were suggested and the control effects were compared with those of existed weir system. The water level for the targeted storage and flood elevation was suggested by building the artificial neural network model. When the underflow type of movable weirs were arranged in a multi-stage way, the peak flood elevation decreased by 68.28% in the downstream compared with the existed weir system, and the total storage of the target section of multi-stage movable weirs increased by 216%. As a result of numerical simulation to build the artificial neural network model, 60%, 20%, and 20% among 216 data were used for the training, validation, and test, respectively. The training result of mean square error was $0.1681m^2$ and the high coefficients of determination were 0.9961, 0.9967, and 0.9943 in the training, validation, and test, respectively. As a result the water level management of each movable weir for the controls of flood elevation in the targeted downstream and targeted storage was suggested by using the artificial neural network.

Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability (고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측)

  • Han, Heechan;Kang, Narae;Yoon, Jungsoo;Hwang, Seokhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.471-479
    • /
    • 2024
  • Flood damage is becoming more serious due to the heavy rainfall caused by climate change. Physically based hydrological models have been utilized to predict stream water level variability and provide flood forecasting. Recently, hydrological simulations using machine learning and deep learning algorithms based on nonlinear relationships between hydrological data have been getting attention. In this study, the Long Short-Term Memory (LSTM) algorithm is used to predict the water level of the Seomjin River watershed. In addition, Climate Prediction Center morphing method (CMORPH)-based gridded precipitation data is applied as input data for the algorithm to overcome for the limitations of ground data. The water level prediction results of the LSTM algorithm coupling with the CMORPH data showed that the mean CC was 0.98, RMSE was 0.07 m, and NSE was 0.97. It is expected that deep learning and remote data can be used together to overcome for the shortcomings of ground observation data and to obtain reliable prediction results.