• Title/Summary/Keyword: mean time

Search Result 10,068, Processing Time 0.036 seconds

An Efficient Synchronization and Cell Searching Method for OFDMA/TDD System (OFDMA/TDD 시스템을 위한 효율적인 동기 추정 및 셀 탐색 기법)

  • Kim, Jung-Ju;Noh, Jung-Ho;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.714-721
    • /
    • 2005
  • In this parer, we analyze the preamble model in the OFDMA/TDD(OFDM-FDMA/Time Division Duplexing). Besides, under AWGN, ITU-R M.1225 Ped-B and Veh-A channel environments, we analyze capabilities of symbol timing & carrier frequency offset and performance of cell searching capabilities applied to OFDM/TDD system through computer simulation. The performance using Detection Probability, False Alarm Probability, Missing Probability, Mean Acquisition Time and MSE(Mean Square Error) is analyzed. Especially, in the case of symbol timing offset estimation, the preamble structure and its algorithm with enhanced performance are proposed and then compared with existing ones.

The Risk-Return Relationship in Crude Oil Markets during COVID-19 Pandemic: Evidence from Time-Varying Coefficient GARCH-in-Mean Model

  • HONGSAKULVASU, Napon;LIAMMUKDA, Asama
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose the new time-varying coefficient GARCH-in-Mean model. The benefit of our model is to allow the risk-return parameter in the mean equation to vary over time. At the end of 2019 to the beginning of 2020, the world witnessed two shocking events: COVID-19 pandemic and 2020 oil price war. So, we decide to use the daily data from December 2, 2019 to May 29, 2020, which cover these two major events. The purpose of this study is to find the dynamic movement between risk and return in four major oil markets: Brent, West Texas Intermediate, Dubai, and Singapore Exchange, during COVID-19 pandemic and 2020 oil price war. For the European oil market, our model found a significant and positive risk-return relationship in Brent during March 26-April 21, 2020. For the North America oil market, our model found a significant positive risk return relationship in West Texas Intermediate (WTI) during March 12-May 8, 2020. For the Middle East oil market, we found a significant and positive risk-return relationship in Dubai during March 12-April 14, 2020. Lastly, for the South East Asia oil market, we found a significant positive risk return relationship in Singapore Exchange (SGX) from March 9-May 29, 2020.

The Anesthetic Effects of Clove Oil and MS-222 on Far Eastern Catfish, Silurus asotus

  • Park, In-Seok
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.183-191
    • /
    • 2019
  • The objective of this study is to evaluate the anesthetic effects of clove oil and tricaine methanesulfonate (MS-222) on the Far Eastern catfish, Silurus asotus, by measuring the times to anesthesia and recovery. Each anesthetic effect of clove oil and MS-222 was tested in two groups of fish with different body sizes: a group of small fish (mean body length: $15.5{\pm}1.58cm$, mean body weight: $50.1{\pm}5.91g$, n=20) and a group of large fish (mean body length: $31.5{\pm}4.19cm$, mean body weight: $302.1{\pm}15.22g$, n=20). The anesthetics were used at concentrations of 200, 300, 400, 500, and 600 ppm. The results showed significant relationships between the concentration of the anesthetic and the body size of the fish. Each of these variables showed statistical significance (p<0.05). The time to anesthesia decreased linearly with increasing concentration in the large fish for both clove oil and MS-222 (p<0.05). Based on an optimal anesthetic time of approximately 1 min, the preferred concentrations of the anesthetics were 500 ppm for clove oil and 600 ppm for MS-222. Both the anesthetic time and the recovery time were shorter for the small fish than for the large fish (p<0.05). Our study showed that the smaller-sized Far Eastern catfish was more easily anesthetized and recovered more rapidly from anesthesia than the larger-sized fish.

Predicting of tall building response to non-stationary winds using multiple wind speed samples

  • Huang, Guoqing;Chen, Xinzhong;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.227-244
    • /
    • 2013
  • Non-stationary extreme winds such as thunderstorm downbursts are responsible for many structural damages. This research presents a time domain approach for estimating along-wind load effects on tall buildings using multiple wind speed time history samples, which are simulated from evolutionary power spectra density (EPSD) functions of non-stationary wind fluctuations using the method developed by the authors' earlier research. The influence of transient wind loads on various responses including time-varying mean, root-mean-square value and peak factor is also studied. Furthermore, a simplified model is proposed to describe the non-stationary wind fluctuation as a uniformly modulated process with a modulation function following the time-varying mean. Finally, the probabilistic extreme response and peak factor are quantified based on the up-crossing theory of non-stationary process. As compared to the time domain response analysis using limited samples of wind record, usually one sample, the analysis using multiple samples presented in this study will provide more statistical information of responses. The time domain simulation also facilitates consideration of nonlinearities of structural and wind load characteristics over previous frequency domain analysis.

Characterizing and modelling nonstationary tri-directional thunderstorm wind time histories

  • Y.X. Liu;H.P. Hong
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.277-293
    • /
    • 2024
  • The recorded thunderstorm winds at a point contain tri-directional components. The probabilistic characteristics of such recorded winds in terms of instantaneous mean wind speed and direction, and the probability distribution and the time-frequency dependent crossed and non-crossed power spectral density functions for the high-frequency fluctuating wind components are unclear. In the present study, we analyze the recorded tri-directional thunderstorm wind components by separating the recorded winds in terms of low-frequency time-varying mean wind speed and high-frequency fluctuating wind components in the alongwind direction and two orthogonal crosswind directions. We determine the time-varying mean wind speed and direction defined by azimuth and elevation angles, and analyze the spectra of high-frequency wind components in three orthogonal directions using continuous wavelet transforms. Additionally, we evaluate the coherence between each pair of fluctuating winds. Based on the analysis results, we develop empirical spectral models and lagged coherence models for the tri-directional fluctuating wind components, and we indicate that the fluctuating wind components can be treated as Gaussian. We show how they can be used to generate time histories of the tri-directional thunderstorm winds.

Heuristic Approach to the Mean Waiting Time of $Geo^x/G/1$ Vacation Queues with N-policy and Setup Time (휴리스틱 방법을 이용한 N정책과 준비기간을 갖는 휴가형 $Geo^x/G/1$ 모형의 평균대기시간 분석)

  • Lee, Sung-Hee;Kim, Sung-Jin;Chae, Kyung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2007
  • We consider the discrete-time $Geo^x/G/1$ queues under N-policy with multiple vacations (a single vacation) and setup time. In this queueing system, the server takes multiple vacations (a single vacation) whenever the system becomes empty, and he begins to serve the customers after setup time only if the queue length is at least a predetermined threshold value N. Using the heuristic approach, we derive the mean waiting time for both vacation models. We demonstrate that the heuristic approach is also useful for the discrete-time queues.

Performance analysis of packet transmission for a Signal Flow Graph based time-varying channel over a Wireless Network (무선 네트워크 time-varying 채널 상에서 Signal Flow Graph를 이용한 패킷 전송 성능 분석)

  • Kim, Sang-Yang;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • Change of state of Channel between two wireless terminals which is caused by noise and multiple environmental conditions for happens frequently from the Wireles Network. So, When it is like that planning a wireless network protocol or performance analysis, it follows to change of state of time-varying channel and packet the analysis against a transmission efficiency is necessary. In this paper, analyzes transmission time of a packet and a packet in a time-varying and packet based Wireless Network. To reflecte the feature of the time-varying channel, we use a Signal Flow Graph model. From the model the mean of transmission time and the mean of queue length of the packet are analyzed in terms of the packet distribution function, the packet transmission service time, and the PER of the time-varying channel.

  • PDF

Validity of a Portable APDM Inertial Sensor System for Stride Time and Stride Length during Treadmill Walking

  • Tack, Gye Rae;Choi, Jin Seung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • Objective: The purpose of this study was to compare the accuracy of stride time and stride length provided by a commercial APDM inertial sensor system (APDM) with the results of three dimensional motion capture system (3D motion) during treadmill walking. Method: Five healthy men participated in this experiment. All subjects walked on the treadmill for 3 minutes at their preferred walking speed. The 3D motion and the APDM were simultaneously used for extracting gait variables such as stride time and stride length. Mean difference and root mean squared (RMS) difference were used to compare the measured gait variables from the two measurement devices. The regression equation derived from the range of motion of the lower limb was also applied to correct the error of stride length. Results: The stride time extracted from the APDM was almost the same as that from the 3D motion (the mean difference and RMS difference were less than 0.0001 sec and 0.0085 sec, respectively). For stride length, mean difference and RMS difference were less than 0.1141 m and 0.1254 m, respectively. However, after correction of the stride length error using the derived regression equation, the mean difference and the RMS difference decreased to 0.0134 m and 0.0556 m or less, respectively. Conclusion: In this study, we confirmed the possibility of using the temporal variables provided from the APDM during treadmill walking. By applying the regression equation derived only from the range of motion provided by the APDM, the error of the spatial variable could be reduced. Although further studies are needed with additional subjects and various walking speeds, these results may provide the basic data necessary for using APDM in treadmill walking.

Theoretical Basis of PERT Formula and a New Estimation Method (PERT 공식의 이론적 근거와 새로운 추정방법)

  • Kim, Se-Hun;Won, Y.K.;Chae, Kyung-C.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.103-108
    • /
    • 1989
  • PERT formulae for the mean and variance of activity time are near exact only over a short interval of the concentration parameter which is defined as the sum of the two shape parameters of the beta distribution. Aiming a better estimation of the mean and variance of activity time, we propose a method of subjectively estimating this concentration parameter via estimating the probability of completing the activity within a specified time interval.

  • PDF

Developing Job Flow Time Prediction Models in the Dynamic Unbalanced Job Shop

  • Kim, Shin-Kon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.67-95
    • /
    • 1998
  • This research addresses flow time prediction in the dynamic unbalanced job shop scheduling environment. The specific purpose of the research is to develop the job flow time prediction model in the dynamic unbalance djob shop. Such factors as job characteristics, job shop status, characteristics of the shop workload, shop dispatching rules, shop structure, etc, are considered in the prediction model. The regression prediction approach is analyzed within a dynamic, make-to-order job shop simulation model. Mean Absolute Lateness (MAL) and Mean Relative Error (MRE) are used to compare and evaluate alternative regression models devloped in this research.

  • PDF