• Title/Summary/Keyword: mean squared prediction error

Search Result 154, Processing Time 0.03 seconds

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.

An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms (데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델)

  • Sathishkumar, VE;Lee, Myeongbae;Lim, Jonghyun;Kim, Yubin;Shin, Changsun;Park, Jangwoo;Cho, Yongyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.153-160
    • /
    • 2020
  • Energy Consumption Predictions for Industries has a prominent role to play in the energy management and control system as dynamic and seasonal changes are occurring in energy demand and supply. This paper introduces and explores the steel industry's predictive models of energy consumption. The data used includes lagging and leading reactive power lagging and leading current variable, emission of carbon dioxide (tCO2) and load type. Four statistical models are trained and tested in the test set: (a) Linear Regression (LR), (b) Radial Kernel Support Vector Machine (SVM RBF), (c) Gradient Boosting Machine (GBM), and (d) Random Forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for calculating regression model predictive performance. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

A Study on the Measurement of Voluntary Disclosure Quality Using Real-Time Disclosure By Programming Technology

  • Shin, YeounOuk;Kim, KiBum
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.86-94
    • /
    • 2018
  • This study focuses on presenting the IT program module provided by real - time forecasting and database of the voluntary disclosure quality measure in order to solve the problem of capital cost due to information asymmetry of external investors and corporate executives. This study suggests a model of the algorithm that the quality of real - time voluntary disclosure can be provided to all investors immediately by IT program in order to deliver the meaningful value in the domestic capital market. This is a method of generating and analyzing real-time or non-real-time prediction models by transferring the predicted estimates delivered to the Big Data Log Analysis System through the statistical DB to the statistical forecasting engine.

Analysis of the Timing of Spoken Korean Using a Classification and Regression Tree (CART) Model

  • Chung, Hyun-Song;Huckvale, Mark
    • Speech Sciences
    • /
    • v.8 no.1
    • /
    • pp.77-91
    • /
    • 2001
  • This paper investigates the timing of Korean spoken in a news-reading speech style in order to improve the naturalness of durations used in Korean speech synthesis. Each segment in a corpus of 671 read sentences was annotated with 69 segmental and prosodic features so that the measured duration could be correlated with the context in which it occurred. A CART model based on the features showed a correlation coefficient of 0.79 with an RMSE (root mean squared prediction error) of 23 ms between actual and predicted durations in reserved test data. These results are comparable with recent published results in Korean and similar to results found in other languages. An analysis of the classification tree shows that phrasal structure has the greatest effect on the segment duration, followed by syllable structure and the manner features of surrounding segments. The place features of surrounding segments only have small effects. The model has application in Korean speech synthesis systems.

  • PDF

Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits

  • Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.622-630
    • /
    • 2024
  • Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.

Developing drilling rate index prediction: A comparative study of RVR-IWO and RVR-SFL models for rock excavation projects

  • Hadi Fattahi;Nasim Bayat
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2024
  • In the realm of rock excavation projects, precise estimation of the drilling rate index stands as a pivotal factor in strategic planning and cost assessment. This study introduces and evaluates two pioneering computational intelligence models designed for the prognostication of the drilling rate index, a pivotal parameter with direct implications for cost estimation in rock excavation projects. These models, denoted as the Relevance Vector Regression (RVR) optimized with the Invasive Weed Optimization algorithm (IWO) (RVR-IWO model) and the RVR integrated with the Shuffled Frog Leaping algorithm (SFL) (RVR-SFL model), represent a groundbreaking approach to forecasting drilling rate index. The RVR-IWO and RVR-SFL models were meticulously devised to harness the capabilities of computational intelligence and optimization techniques for drilling rate index estimation. This research pioneers the integration of IWO and SFL with RVR, constituting an unprecedented effort in forecasting drilling rate index. The primary objective of this study was to gauge the precision and dependability of these models in forecasting the drilling rate index, revealing significant distinctions between the two. In terms of predictive precision, the RVR-IWO model emerged as the superior choice when compared to the RVR-SFL model, underscoring the remarkable efficacy of the Invasive Weed Optimization algorithm. The RVR-IWO model delivered noteworthy results, boasting a Variance Account for (VAF) of 0.8406, a Mean Squared Error (MSE) of 0.0114, and a Squared Correlation Coefficient (R2) of 0.9315. On the contrary, the RVR-SFL model exhibited slightly lower precision, yielding an MSE of 0.0160, a VAF of 0.8205, and an R2 of 0.9120. These findings serve to highlight the potential of the RVR-IWO model as a formidable instrument for drilling rate index prediction, particularly within the framework of rock excavation projects. This research not only makes a significant contribution to the realm of drilling engineering but also underscores the broader adaptability of the RVR-IWO model in tackling an array of challenges within the domain of rock engineering. Ultimately, this study advances the comprehension of drilling rate index estimation and imparts valuable insights into the practical implementation of computational intelligence methodologies within the realm of engineering projects.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.

Modeling the growth of Listeria monocytogenes during refrigerated storage of un-packaging mixed press ham at household

  • Lee, Seong-Jun;Park, Myoung-Su;Bahk, Gyung-Jin
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • The present study aimed to develop growth prediction models of Listeria monocytogenes in processed meat products, such as mixed pressed hams, to perform accurate microbial risk assessments. Considering cold storage temperatures and the amount of time in the stages of consumption after opening, the growth of L. monocytogenes was determined as a function of temperature at 0, 5, 10, and $15^{\circ}C$, and time at 0, 1, 3, 6, 8, 10, 15, 20, 25, and 30 days. Based on the results of these measurements, a Baranyi model using the primary model was developed. The input parameters of the Baranyi equation in the variable temperature for polynomial regression as a secondary model were developed: $SGR=0.1715+0.0199T+0.0012T^2$, $LT=5.5730-0.3215T+0.0051T^2$ with $R^2$ values 0.9972 and 0.9772, respectively. The RMSE (Root mean squared error), $B_f$ (bias factor), and $A_f$ (accuracy factor) on the growth prediction model were determined to be 0.30, 0.72, and 1.50 in SGR (specific growth rate), and 0.10, 0.84, and 1.35 in LT (lag time), respectively. Therefore, the model developed in this study can be used to determine microorganism growth in the stages of consumption of mixed pressed hams and has potential in microbial risk assessments (MRAs).

Prediction of the Number of Crimes according to Urban Environmental Factors in the Metropolitan Area (수도권 도시 환경 요인에 따른 범죄 발생 건수 예측)

  • Ye-Won Jang;Ye-Lim Kim;Si-Hyeon Park;Jae-Young Lee;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.321-322
    • /
    • 2023
  • 본 논문에서는 Scikit-learn 패키지의 LinearRegression 모델과 Keras 딥러닝 모델을 활용하여 수도권 도시 환경 요인에 따른 범죄 발생 건수를 예측 모델을 제안한다. 연구 방법으로 범죄 발생과 유의미한 관계가 있다고 파악되는 수도권의 각 자치구 별 데이터셋을 분석하여, CCTV, 파출소, 가로등의 수가 범죄 발생에 유의미한 영향을 끼치는 것을 확인하였다. 독립 변수들 간에 Scale을 줄이고자 정규화를 진행했고, 종속변수의 정규성 확보를 위해 로그변환을 취했다. 손실 함수는 회귀문제에서 사용되는 'relu'함수를 사용했고 모델의 성능을 확인할 수 있는 지표로 MSE(Mean Squared Error)를 사용해 모델을 구성하였다. 본 논문에서 설계한 이 프로그램은 범죄 발생율이 높은 지역구에 경찰 인력의 추가적 배치, 안전 시설 확충 등 실무적 조치를 취함에 있어 근거를 제공할 수 있을 것으로 사료된다.

  • PDF

Modeling of PECVD Oxide Film Properties Using Neural Networks (신경회로망을 이용한 PECVD 산화막의 특성 모형화)

  • Lee, Eun-Jin;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.831-836
    • /
    • 2010
  • In this paper, Plasma Enhanced Chemical Vapor Deposition (PECVD) $SiO_2$ film properties are modeled using statistical analysis and neural networks. For systemic analysis, Box-Behnken's 3 factor design of experiments (DOE) with response surface method are used. For characterization, deposited film thickness and film stress are considered as film properties and three process input factors including plasma RF power, flow rate of $N_2O$ gas, and flow rate of 5% $SiH_4$ gas contained at $N_2$ gas are considered for modeling. For film thickness characterization, regression based model showed only 0.71% of root mean squared (RMS) error. Also, for film stress model case, both regression model and neural prediction model showed acceptable RMS error. For sensitivity analysis, compare to conventional fixed mid point based analysis, proposed sensitivity analysis for entire range of interest support more process information to optimize process recipes to satisfy specific film characteristic requirements.