• 제목/요약/키워드: mean pressure coefficient

검색결과 242건 처리시간 0.019초

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

석유 팬 히터의 연소실 주변 열전달 특성 (Heat transfer characteristics around a circular combustion chamber of kerosene fan heater)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.

종이의 투기도가 담배 물성에 미치는 영향 (The Effect of Paper Permeability on Cigarette Properties)

  • 김영호;한영림;이문용;이영택;김정열
    • 펄프종이기술
    • /
    • 제33권1호
    • /
    • pp.64-72
    • /
    • 2001
  • The cigarette ventilation affects not only the amount of tar and nicotine delivery by a cigarette, but also the composition of the smoke. Therefore, it is important to stabilize of variability in cigarette ventilation that would be affected by changes in cigarette components. This work was conducted to determine the major factors that influence the cigarette ventilation and also to provide fundamental informations for improving the uniformity of cigarette performances. To evaluate the effect of cigarette ventilation as a dependant variable, the three independent factors were the air permeability of plugwrap, tipping paper and the filter pressure drop. We determined the effect of paper permeability on ventilation variability and the optimum condition in combinations of independent factors. The mean of cigarette ventilation was increased as plugwrap permeability increases, particularly at 26,000 CU. However, it was exhibited that standard deviation and coefficient of variation of the cigarette ventilation were decreased with increasing plugwrap permeability. At the 600 CU and 1,200 CU of tipping paper permeability, process capability index (Cp) of the cigarette ventilation increased as plugwrap permeability increases. Following the optimum condition of cigarette ventilation induced by fitted regression equation, one was to optimize 50% ventilation level is by combination with plugwrap permeability of 16,000 CU, tipping paper permeability of 810 CU, filter pressure drop of 319 mm$H_2O$, respectively.

  • PDF

야간 지표 고농도 오존에 관한 연구 (The Study on the High Nocturnal Concentration of Ground Level Ozone)

  • 김유근;홍정혜
    • 한국대기환경학회지
    • /
    • 제14권6호
    • /
    • pp.545-554
    • /
    • 1998
  • The diurnal variation of O3 concentration shows two peaks, the first peak at noontime and the secondary peak at night. In order to show why the secondary peak, high nocturnal O3 concentration, occurs without sunlight which is a essential factor of a photochemical response, the O3 concentration, several weather elements and synoptic weather map were used for June∼September at 1995, 1996. The mean concentration of high nocturnal O3 concentration days is higher by 5.4 ppb than that of low nocturnal O3 concentration days. The nocturnal O3 concentration is higher than that of diurnal O3 concentration during high nocturnal O3 concentration days, at July, 1995 and June, 1996. The high nocturnal O3 concentration is related to low air pressure, high cloud cover and high wind speed. The correlation coefficient, r. between nocturnal O3 concentration and wind speed, pressure and cloud cover is 0.387, -0.218, and 0.194, respeftiviely. It is interesting that the O3 concentration increases at Pusan when the typhoon passes by. The same result showed at Taegu when the typhoon FAYE passed by. According to the analysis of nocturnal O3 concentration for June∼September at 1995 and 1996, it seems that the high nocturnal O3 concentration relates to the trough and cyclones passing by Pusan.

  • PDF

The effects of grooves on wind characteristics of tall cylinder buildings

  • Yuan, Wei-bin;Yu, Nan-ting;Wang, Zhao
    • Wind and Structures
    • /
    • 제26권2호
    • /
    • pp.89-98
    • /
    • 2018
  • For most full-scale tall buildings the Reynolds number of a flow field around a circular cylinder under strong wind is usually greater than $2{\times}10^7$, which is difficult to achieve in most wind tunnel tests. To explore the wind characteristics of tall cylindrical buildings with equidirectional grooves from subcritical to transcritical flow ($6.6{\times}10^4{\leq}Re{\leq}3.3{\times}10^5$ and $9.9{\times}10^6{\leq}Re{\leq}7.2{\times}10^7$), wind tunnel tests and full-scale large eddy simulations were carried out. The results showed that the rectangular-grooves narrow the wake width due to the downstream movement of the separation point and the deeper grooves cause smaller mean and fluctuating pressure while the peak pressure is little affected. Furthermore, the grooves lead to lower frequency of vortex shedding but the Strouhal number remains at the range from 0.15 to 0.35. The drag coefficient of the cylinders with grooves was found to be 2~3 times as large as that of smooth cylinders.

타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구 (A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder)

  • 최재호;조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

심실세동 심전도 파형 추출 파라미터를 이용한 관상동맥 관류압 예측 (A Prediction of Coronary Perfusion Pressure Using the Extracted Parameter From Ventricular Fibrillation ECG Wave)

  • 장승진;황성오;윤영로;이현숙
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권4호
    • /
    • pp.274-283
    • /
    • 2005
  • Coronary Perfusion Pressure(CPP) is known for the most important parameter related to the Return of Spontaneous Circulation (ROSC), however, clinically measuring CPP is difficult either invasive or non-invaisive method. En this paper, we analyze the correlation between the extracted parameter from VF ECG wave and the CPP with the statistical method, and predict CPP value using the extracted parameters within significance level. the extracted parameters are median frequency(MF), peak frequency(PF), average segment amplitude(ASA), MSA(maximum segment amplitude), Two parameters, MF, and ASA are selected in order to predict CPP value with general regression neural network, and then we evaluated the agreement statistics between the simulated CPP and the measured CPP. In conclusion, the mean and variance of the difference between the simulated CPP and the measured CPP are 8.9716±1.3526 mmHg, and standard deviation 6.4815 mmHg with one hundred-times training and test results. the simulated CPP and the measured CPP are agreed with the overall accuracy $90.68\%$ and kappa coefficient $81.14\%$ as a discriminant parameter of ROSC.

BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구 (A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device)

  • 김진하;류재문;홍도천;홍석원
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Nucleate Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a

  • Park Ki-Jung;Jung Dong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.399-408
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficient (HTCs) were measured with one nonazeotropic mixture of propane/isobutane and two azeotropic mixtures of HFC134a/isobutane and propane/HFC 134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube of 19.0mm outside diameter with heat fluxes of $10\;kW/m^2\;to\;80kW/m^2$ with an interval of $10\;kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of propane/isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/isobutane and propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with larger gliding temperature difference. Stephan and Korner's and lung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/isobutane and propane/HFC134a.