• Title/Summary/Keyword: mean hydrophobicity

Search Result 11, Processing Time 0.028 seconds

미생물 고정화 담체의 물리적 특성

  • 박영식;구기우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • In order to develop of support medla for bloom reactor, physicochemical properties and attachability of surface of activated carbon, clay mineral, non-clay mineral, and waste mold sand were enamined. Measured physicochemical properties of materials were surface roughness, mean particle size, surface area, hydrophobicity, and surface charge. At a tested materials, activated carbon was the best attachable material and microorganisms were attached $20.1{\times}10^7CFU/cm^2$ at surface, compared with diatomaceous earth which were attached of $9.2{\times}10^7CFU/cm^2$ in our research, surface area and hydrophobicity show- ed more Influence than any other factor on attachment of microorganisms.

  • PDF

Sequential Conjugation of 6-Aminohexanoic Acids and L-Arginines to Poly(amidoamine) Dendrimer to Modify Hydrophobicity and Flexibility of the Polymeric Gene Carrier

  • Yu, Gwang-Sig;Yu, Ha-Na;Choe, Yun-Hui;Son, Sang-Jae;Ha, Tai-Hwan;Choi, Joon-Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.651-655
    • /
    • 2011
  • We synthesized a novel cationic dendrimer consisting of a poly(amidoamine) dendrimer (PAMAM, generation 4) backbone with both L-arginine (Arg) at the termini and 6-aminohexanoic acid (Ahx) between the original core polymer and the peripheral Arg units. The sequential chemical modification of PAMAM G4 with Ahx and Arg resulted in higher transfection efficiency with much less cytotoxicity. PAMAM G4-Ahx-Arg formed stable polyplexes at weight ratios of 8:1 or higher (polymer: plasmid DNA), and the mean polyplex diameter was $180{\pm}20nm$. PAMAM G4-Ahx-Arg showed much higher transfection ability than PAMAM G4 or PAMAM G4-Ahx. Furthermore, PAMAM G4-Ahx-Arg was much less cytotoxic than PEI25KD and PAMAM G4-Arg. In addition to Arg grafting of the PAMAM dendrimer, which endows a higher transfection capability, the addition of Ahx spacer increased dendrimer hydrophobicity, introduced flexibility into the conjugated amino acids, and reduced cytotoxicity. Overall, it appears that the concomitant modification of PAMAM with Ahx and Arg could lead to new PAMAM conjugates with better performances.

Recycling of Plant Fiber Resources: Enhanced Hydration of Newspaper Stock for Decrease of Deinking Reject (식물유래 섬유자원의 재활용: 탈묵 수율 개선을 위한 신문 지료의 수화 촉진 방안)

  • Chung, Sung-Hyun;Kim, Joong-Ho;Joo, Jong-Hun;Bang, Jae-Wook
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.39-41
    • /
    • 2011
  • The recycling rate of recovered paper in Korea is the highest in the world, 92%, but remanufacturing yield is low due to the extremely poor quality of the paper. The poor quality, in turn, influences to the reject amount in deinking process. To increase the yield of old newspaper recycling process, hydrophobic degree of inorganic pigments of deinking stock must be reduced. To determine the hydrophobicity, Pitch Potential Deposit Tester (PDT) was newly designed and applied with respect to the SB latex property of various quality used in Korea; its hydrophobic degree according to Tg, gel content, charge and particle size of latex and optimum designing condition of SB latex. And below are the conclusions: 1. The reason of excessive reject from old newspaper deinking process for total amount of printed ink is loss of inorganic pigments. When lipase, a biochemical catalyst, was applied with the purpose of preventing inorganic pigments loss about more than 70% of total reject weight and promoting hydration of pulp for deinking, deinking process yield of pre flotation secondary stage increased remarkably without any changes of deinking efficiency. 2. Lipase improved deinking stock by cutting ester linkage on surface of hydrophobic materials to promote its hydration. From this, it reached the conclusion that hydration degree of stock exercises significant effect on flotation deinking process yield. 3. Inorganic alkali promotes hydration of deinking stock. But there have been needs for more fundamental measures other than inorganic alkali of promoting hydration for yield improvement. For this, this study intended to find out reasons of chemical properties change on surface of hydrophobic material by change of pH. 4. Pitch Deposit Test (PDT) was performed for understanding principle of why surface of coating flake from OMG is hydrophobic and why it becomes hydrophilic when pH of stock is alkaline. As a result of this test, it is determined that swelling property by change of pH of latex film, which were used as coating adhesive is the reason for hydrophobic change. 5. Hydrophilicity of coating flake increased with hydrophilic pigments. And as more of SB Latex adhesive was used and higher of calcium hardness of stock became, its hydrophilicity decreased. SB Latex adhesive film is reformed by mechanical friction. For having hydrophilicity under neutral pH, strong bruising action such as kneading is required. 6. Because swelling of adhesive film decreases as Tg of SB latex gets lower and mean diameter gets smaller, it shows hydrophobicity under neutral pH. This lowers hydrophilicity of coating flake, which leads to easy elimination with flotation reject on DIP process. Therefore, for improving future flotation yield, it is necessary to develop to use eco-friendly clean SB latex by raising Tg and increasing mean diameter for recycling, and as a result, to reduce excessive loss of coating flake as a reject from deinking process.

  • PDF

Visualization of Geometric Features in the Contact Region of Proteins (단백질 접촉 영역의 기하학적 특성 가시화)

  • Kim, Ku-Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.421-426
    • /
    • 2019
  • In this paper, we propose a method to visualize the geometric features of the contact region between proteins in a protein complex. When proteins or ligands are represented as curved surfaces with irregularities, the property that the two surfaces contact each other without intersections is called shape compatibility. Protein-Protein or Protein-Ligand docking researches have shown that shape complementarity, chemical properties, and entropy play an important role in finding contact regions. Usually, after finding a region with high shape complementarity, we can predict the contact region by using residual polarity and hydrophobicity of amino acids belonging to this region. In the research for predicting the contact region, it is necessary to investigate the geometrical features of the contact region in known protein complexes. For this purpose, it is essential to visualize the geometric features of the molecular surface. In this paper, we propose a method to find the contact region, and visualize the geometric features of it as normal vectors and mean curvatures of the protein complex.

Effect of Effluent Organic Matters on Estrogenic Activity Reduction of Bisphenol A by Photolysis (광분해 반응에 의한 비스페놀 A의 에스트로겐 활성 저감에 미치는 방류수 유기물질의 영향)

  • Yoo, Jisu;Na, Joolim;Jung, Jinho
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • This study investigates the effect of effluent organic matter (EfOM) from sewage wastewater treatment plants on estrogenic activity reduction of bisphenol A (BPA) by UV photolysis. The EfOM and Suwannee River natural organic matter (SR-NOM) as reference were isolated into hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions depending on polarity. The specific ultraviolet absorbance (SUVA) analysis indicated that EfOM showed similar properties to microbially derived organic matters with low hydrophobicity, which is different from SR-NOM having high hydrophobicity. UV irradiation upto 3 hr significantly reduced SUVA values of both EfOM and SR-NOM (p<0.0001), depending on the polarity of organic matters. In the absence of organic matters, the relative estrogenic activity (REA) of BPA ($5.0{\times}10^{-5}M$) was decreased from 86% to 63% by UV photolysis (2 hr). However, the decrease of mean REA was from 68% to 37% in the presence of organic matters, which was significantly independent on the type (EfOM or SR-NOM) and polarity (HPO, TPI or HPI) of organic matters (p>0.05). As a result, the reduced REA by UV photolysis of BPA with and without organic matters was 31% and 23%, respectively, suggesting that both EfOM and SR-NOM accelerated the photolytic reduction of BPA estrogenic activity.

Relative Risk of Virulence Factors in Candida-Infected Mouse (캔디다균 감염 마우스 모델에서 병독인자의 비교위험도)

  • Kim, Dong-Hwa;Shin, Woon-Seob;Lee, Kyoung-Ho;Kim, Kyung-Hoon;Park, Yoon-Sun;Park, Joo-Young;Koh, Choon-Myung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.317-324
    • /
    • 2000
  • Candida albicans is one of the most frequently isolated fungal pathogens in human. Recently, the prevalence of candida infection has markedly increased, partially due to the increase of immunocompromised hosts. Proposed virulence factors of the pathogenic Candida are the ability to form hyphae to adhere to epithelial cell surfaces, and to secrete acid proteinases and phospholipases. We measured the relative cell surface hydrophobicity (CSH) and the ability of proteinase production (PROT), phospholipase production (PLase), adherence to host epithelium (ADH), and hyphal transition (Germ). The relative risk of virulence factors was analyzed by lethality test in murine model of hematogeneously disseminated candidal infection. According to Cox's proportional hazard analysis, the statistically significant virulence factors were PROT, ADH, and CSH. PROT was the highest risk factor of them. To evaluate the applicability for the diagnosis and treatment of Candidiasis, we examined the protective effect of the active and passive immunizations with the materials purified from virulence factors and antibodies to them in Candia-infected mice model. The mean survival times of active and passive immunized groups were slightly longer than those of non-immunized groups.

  • PDF

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Spectroscopic Analysis of Partially Folded State of Ubiquitin (유비퀴틴 단백질의 부분적으로 폴딩된 구조에 대한 분광학적 분석)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.305-310
    • /
    • 2003
  • Hydrophobic core variant of ubiquitin appeared to have partially folded structure at pH around 2. The intrinsic tryptophan fluorescence emission maximum of this ubiquitin variant at pH 2 showed slight blue shift compare to that of unfolded state, suggesting that some residual tertiary structures remain in this solvent condition. At the same solvent condition, this ubiquitin variant binds with hydrophobic dye, 8-anilinonaphthalene-1-sulfonic acid(AMS), which is known to bind to exposed hydrophobic surface. Furthermore, far-UV circular dichroic spectrum of this ubiquitin variant in the diminished pH was remarkably different from the far-UV CD spectrum of the native state or unfolded state. Based on the molar ellipticity at 220 nm, this ubiquitin variant at pH 2 appeared to have significant amount of secondary structures. All these observations suggest that this ubiquitin variant in the diminished solvent pH has loosely folded hydrophobic core with some secondary structures, which are key features of molten globule conformation. Since molten globule has long been considered as a protein folding intermediate, it is considered that this hydrophobic core variant ubiquitin will serve as a valuable model to study protein folding process.

Study on the Preparation and Characterization of Ophthalmic Polymer with High and Low-Water Content

  • Lee, Min-Jae;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.346-351
    • /
    • 2017
  • This study was planned considering the chain length, hydrophilicity, and hydrophobicity of the additives to be used in the polymerization, while various ophthalmic lenses that use various additives with similar water contents were manufactured before their optical and physical properties were compared and analyzed. With regard to the additives required for manufacturing high-, medium-, and low-water content lens groups, HEA (hydroxyethyl acrylate), PVP (polyvinylpyrrolidone), and NMV(N-methyl-N-vinylacetamide) were used as additives for preparing the high-water content lens group, HEMA(2-hydroxyethyl methacrylate), HPMA(hydroxypropyl methacrylate) and BD(1,4-butanediol) were used for the medium-water content lens group. For the low-water content lens group, BMA(buthyl methacrylate), BDDA(1,4-butanediol diacrylate), and Bis-GMA(bisphenol A glycerolate diacrylate) were used, respectively. The average water content of HEA was 40.14%; that of PVP, 39.63%; and that of NMV, 40.52%. The mean of water content was 35.92% for HEMA, 35.74% for BD, and 34.62% for HPMA. For the low-water content lens group, the mean of water content was 26.69% for BMA, 27.76% for BDDA, and 26.14% for Bis-GMA. With regard to the results of the water content measurement using a moisture analyzer, the average water content of the high-water content lens group was 41.34% for HEA, 42.62% for PVP, and 42.73% for NMV. Finally, for the low-water content lens group, the average water content was 28.62% for BMA, 28.82% for BDDA, and 28.32% for Bis-GMA. The measurements of the water contents of the lenses using the two methods showed that the water content and refractive index of the lenses were similar in all the lens groups. The measurements of the contact angles, however, showed a different wettability value for each lens with a similar water content. Also, the change tendency of the lens curvature according to the change of time showed that the change amount became larger and the recovery time became longer from the lens samples with a lower water content to those with a higher water content. Based on these results that will be helpful for the study of ophthalmic lenses.