• 제목/요약/키워드: mean comfort

검색결과 308건 처리시간 0.028초

PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션 (An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index)

  • 성남철;윤동원
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.19-25
    • /
    • 2010
  • 최근 에너지 절약을 화두로 건물에서의 에너지 절약기술들이 크게 요구되어 지는 반면 재실자의 온열쾌적환경은 비교적 비중 있게 다루어지지 않고 있다. 실내공간의 쾌적성은 재실자의 만족감과 더불어 생산성을 향상시키는 등의 역할을 하며, 최근 삶의 질 향상 등에 따라 그 필요성이 크게 요구되고 있는 실정이다. 따라서 본 연구에서는 공동주택을 대상으로 겨울철 난방 시 쾌적지표를 통한 실내 온열환경 제어의 타당성을 검토하고자 시뮬레이션을 수행하였으며, 주거건물에서의 일상적인 실내온도와 에너지 절약 설계기준에서 제시한 실내 설정온도, 그리고 쾌적지표를 설정으로 한 각 제어조건의 온열환경과 에너지 소비량을 비교 분석 및 검토하였다. 본 연구결과에 따르면, 쾌적지표인 PMV로 실내환경을 제어했을 때 에너지 절약설계 기준인 $22^{\circ}C$로 실내온도를 설정하였을 때보다 에너지 소비량은 29% 증가하지만 주거용 건물에서 일반적으로 유지되는 실내온도인 $24^{\circ}C$ 보다는 에너지소비량은 11% 정도 감소하며, 온열쾌적감도 각 제어조건 중 가장 우수하게 나타났다. 따라서 여러 가지 제어변수들을 통한 연구가 지속된다면 주거용 건물에서도 쾌적지표를 활용한 실내 공간의 제어방법은 건물의 에너지를 절약하고 실내 환경의 쾌적성을 증대시키는 주요기술이 될 수 있을 것으로 기대된다.

Analysis of optimal activities according to thermal comfort in the forest: focusing on a program for the elderly at the National Forest Therapy Center

  • Tae-Gyu Khil;Ah-Young Jung;Kun-Woo Park;Yang-Soon Oh;Beom Lee;Dawou Joung;Hyelim Lee;Bum-Jin Park
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.663-673
    • /
    • 2023
  • The purpose of this study was to scientifically activate the forest healing program activities for the elderly. The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD), which are indices of thermal comfort in the thermal environment, and degree of canopy closure were compared and analyzed. Based on this information, the study objective was to present the appropriate conditions for maintaining the best comfort for the elderly. Six deck road shelters, which are the most active locations in forest healing programs among the National Center for Forest Therapy, were selected as the study sites. The results indicated that in the case of the conditions of 1 clo (clothing insulation value) and 1 met (metabolic rate) at an air temperature of 19 to 21 degrees in September on the measurement date, the PMV values ranged between -1.85 and -0.98 at all sites, and PPD values ranged between 25.60% and 68.68%. On the other hand, in the case of 1.3 clo and 1.6 met conditions, the PMV values ranged between -0.08 and 0.23 for all sites and PPD values ranged between 5.40 and 6.18. As shown above, the difference in thermal environment comfort and satisfaction according to the condition of the amount of metabolism and the amount of clothing could be confirmed. In addition, an analysis of the relation between PPD and canopy closure suggested a significantly positive correlation between them, and it was found that canopy closure was a factor affecting thermal comfort. Studies on effects of forest thermal environmental comfort and canopy closure on forest healing program areas should be conducted extensively according to seasonal conditions to provide information that can be used for more effective forest healing programs.

트랙터 안전캡의 환경 쾌적성 평가 (Evaluation of Environmental Comfort of Tractor Cabs)

  • 황기영;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2009
  • In order to evaluate environmental comfort of tractor cabs, temperature, relative humidity and noise within the cab were taken from 31 tractors during plowing and rotovating operations. The temperature and humidity were evaluated with regard to the comfort zone of KS B ISO 14269-2 and PMV of ISO 7730. The noise was evaluated with regard to the permissible sound level of OSHA for daily exposure of 8 hours. The collected data indicated that thermal environment of the cabs was out of the comfort zone, which meant tractor operators worked under uncomfortable thermal conditions. Difference in the thermal comfort by tractor power and maker, and type of works was not found. However, 25% of the studied tractors showed PMV in a range of -0.5 to +0.5, which indicated their operators worked under the comfort criteria. PMV was improved when the cab was air-conditioned. Levels of measured cab noise were lower than the permissible criteria, and 76.7% of the studied tractors had cab noise ranged from 75 to 85 dBA. There was a tendency that high powered tractors, rotovating operations and locally-made tractors had greater cab noise levels. However, their differences were insignificant.

천장복사냉방의 온열쾌적성 평가에 관한 연구 (Evaluation of Thermal Comfort in Ceiling Cooling System)

  • 이주연
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.287-293
    • /
    • 2008
  • The purpose of this study was to clarify the effects of air and ceiling temperatures on a type of ceiling cooling system that involves cool water circulation. The experiment is conducted in summer. The subjects (11 young females) are exposed to the following conditions: combinations of air temperatures $(27^{\circ}C,\;29^{\circ}C,\;31^{\circ}C)$ and ceiling temperature of $(22.7^{\circ}C,\;23.7^{\circ}C,\;24.7^{\circ}C)$ in still air and RH 50%. The following results were obtained; the thermal sensation vote is neutral at a mean skin temperature of $34.5^{\circ}C$. The ceiling temperature affected different parts of the body. For example, the forehead, scapula and abdomen produced different skin temperatures. Thermal comfort vote was rated as comfortable at high temperature environment. The satisfaction from the ceiling temperature was valued comfortable zone in this experiment. Mean skin temperature showing higher thermal neutrality temperature than existing studies for floor and wall radiation cooling results.

사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험 (Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems)

  • 조용;권혁승;김성현;김영일
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF

태양일사가 실내공간의 열적 쾌적성과 환기성능에 미치는 영향에 관한 연구 (The study on the effect of the solar radiation on thermal comfort and ventilation performance in room space)

  • 연성현;이효준;리광훈
    • 한국가시화정보학회지
    • /
    • 제14권1호
    • /
    • pp.19-26
    • /
    • 2016
  • Modern people spend much time at indoor space. So, People want to make better indoor air condition. But the facade of building is made of glass to be seen urbanely, the effect of solar radiation makes indoor environment worse. This study designs an open space affected by solar radiation with 4-way cassette air-conditioner. Using numerical simulation, this paper investigates thermal comfort and ventilation performance with discharge angles $30^{\circ}$ and $45^{\circ}$. To study thermal comfort, this paper studies distribution of velocity, temperature and effective draft temperature. Also, this paper introduces concept of air age to study ventilation performance. The flow influenced by solar radiation determines thermal comfort and ventilation performance in room space. This study shows that discharge angle of 45 degree has better thermal comfort and ventilation performance than that of 30 degree.

Evaluation of Thermal Comfort on Protective Clothing Worn in an Radiation Power Plant

  • Kim, Eun-Joo;Han, Myung-Sook;Lee, Won-Ja
    • The International Journal of Costume Culture
    • /
    • 제3권1호
    • /
    • pp.30-40
    • /
    • 2000
  • The purpose of this research was to device thermal comfort model for radiation power plant workers in protective clothing. Three fabrics commonly used in protective workwear were made into coveralls of identical design and were evaluated by adult healthy males in four simulated work environment. It was investigated between the physiological response and subjects comfort according to environmental variance and clothing types. The of simulated work enviro mensent was controlled under four different humidity and temperature of each type. (Temperature 20±1℃, RH 40∼70%±5%, Temperature 30±1℃, RH 40∼70%±5%) An index of physiological response was connected with the thermal comfort designed. Mean skin temperature, skim temperature, Axillasy temperature ear canal temperature, clothing climate, total sweat, blood pressure, and R-R interval were be evaluated. Skin temperature difference ocurring during exercise and rest were significant only with respect to time and regions of the body, This despite physical differences in the three coveralls, particulary mass statistically experiment. Also, an index of subject wearing sensation was designed for thermal comfort after investigation determined the kind of clothes and the type of environment. As a result of this research, two types of multiple regressions was deviced to estimate thermal comfort of the protective clothing.

  • PDF

자동차 에어컨 쾌적제어 알고리즘 개발을 위한 운전자 온열감성 평가 : 제 1 보-운전자의 에어컨 조작 선호도 (Comfort Control Algorithm Development of Car Air Conditioner using Thermal Comfort Evaluation of Driver : Part I - Air-conditioning Operating Preference of Driver)

  • 김민수;김동규;이기덕;금종수
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.294-300
    • /
    • 2014
  • In this study, we investigated and evaluated the air conditioning operation of the driver according to the temperature difference between the inside and outside of a car parked outside during the summer. We suggest including a comfort mode to the car air conditioning system to improve the thermal comfort of the driver, in which the comfort can be maintained for a longer time. For the a result of our experiment, in the cases with temperature of above $45^{\circ}C$ inside of the car, the subjects preferred strong air blow with the face and the arms in the direction of the blow. In the cases with temperature of below $40^{\circ}C$ inside of the car, the subjects preferred lower volume of air blow. In the temperature below $28.1^{\circ}C$ inside of the car, the mean temperature on the skin of the driver reached the comfort zone.

급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경 (Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling)

  • 김요셉;김영일;유호선
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

새 국립중앙박물관 로튠다에서의 열환경 분석 (Analysis on Thermal Environment in the Rotunda of New National Museum of Korea)

  • 이승철;조영진;김두성;이재헌;김홍범
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.32-39
    • /
    • 2003
  • Thermal comfort in the Rotunda which is high wide visiting space of the new national museum of Korea has been numerically investigated in this paper. To evaluate thor-mal comfort of the Rotunda, well-known indices, PMV and PPD were introduced. The results of present investigation show that thermal comfort is satisfied at the breathing zone of the visiting space. However a thermal stratification with $9^{\circ}C$ of temperature difference occurs along the height of the Rotunda which makes the thermal environment worse. For example, the PPD value reaches up to 50% in the 6th floor connection passage. Consequently, additional HVAC design factors should be considered in order to reduce the large thermal stratification.