• Title/Summary/Keyword: mealworm (Tenebrio molitor)

검색결과 72건 처리시간 0.018초

Effects of agricultural byproducts, DDG and MSG, on the larval development of mealworms

  • Kim, Sun Young;Kim, Hong Geun;Lee, Kyeong Yong;Yoon, Hyung Joo;Kim, Nam Jung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제32권2호
    • /
    • pp.69-79
    • /
    • 2016
  • Distillers dried grain (DDG) and makgeolli spent grain (MSG) are agricultural byproducts to produce alcoholic beverage. However, they are known to contain enough nutrients. Mealworm is a promising insect resource for an animal feed ingredient as well as alternative human food. With low cost, DDG and MSG were investigated as a feed ingredient for rearing high quality mealworms. DDG and MSG were mixed with wheat bran and compared to control feed (only wheat bran) for its effects on larval survivorship, larval weight, duration for developmental period, pupation rate, and pupal weight. When DDG added, larval survivorship was reduced to 50~70% compared to the control group. Larvae fed on DDG were heavier from third to sixth week. Especially, larvae with 50% DDG were 28% heavier than the control group at the third week. For the larval period, the 50% DDG group was 11% less than that for the control. The pupal weight for the 30% DDG group was 7% heavier than that for the control group. Pupation rates for all the DDG groups were higher than 90%. When compared to the control, larval survivorship for the 70% MSG group was low, but the 50% and 70% MSG groups were high during the seventh and eighth weeks because of delayed development. After the eighth week, larvae with 70% MSG showed the highest larval weight increase as 9~18% compared to the control group. Except 70% MSG group, all of MSG groups showed more than 90% pupation rates. We confirmed that adding 30~50% of DDG or MSG to conventional wheat bran have a strong potential to replace the conventional wheat bran insect feed for quality insect production.

블랜칭법으로 희생한 4종 식용 곤충의 냉장 저장 중 산화 안정성 (Study on the Oxidative and Microbial Stabilities of Four Edible Insects during Cold Storage after Sacrificing with Blanching Methods)

  • 손양주;안휘;김수희;박효남;최수영;이동규;김안나;황인경
    • 한국식품영양학회지
    • /
    • 제29권6호
    • /
    • pp.849-859
    • /
    • 2016
  • Edible insects have gained recognition worldwide as complementary protein sources. Recently, four edible insects were newly allowed to be used as food materials in Korea: the mealworm (Tenebrio molitor), the cricket (Velarifictorus asperses), the white-spotted flower chaffer beetle larva (Protaetia brevitarsis seulensis), and the rhinoceros beetle larva (Allomyrina dichotoma). In this study, we evaluated the oxidative stabilities of these four edible insects during cold storage. The insects were sacrificed by blanching for 3 minutes in boiling water. The blanched insects were then stored at $4^{\circ}C$ in an incubator for 42 days. The color values, titratable acidity, peroxide values, acid values, TBARS, contents of VBN, and total plate counts of the insects were measured at days 0, 2, 4, 7, 10, 14, 21, 28, 35, and 42, respectively. Blanching decreases oxidative stresses during storage. At day 0, the white-spotted flower chaffer beetle larva showed the highest values for acid value, TBARS, VBN, and microbial counts. Most of the oxidative indicators were significantly changed at day 14 in all four insects, possibly related with the growth on all microbial plates. Based on microbial safety and the oxidative stabilities of lipids and proteins, optimal storage conditions for the cricket, the white-spotted flower chaffer beetle larva, and the rhinoceros beetle larva were 10~14 days at $4^{\circ}C$. Likewise, the mealworm showed rapid oxidation after day 14, but poor qualities were not observed until day 28.