• Title/Summary/Keyword: maxwell stress tensor

Search Result 62, Processing Time 0.015 seconds

The Characteristic Analysis for Thrust and Normal Force of Linear Pulse Motor (리니어 펄스 모터의 추력 및 수직력에 대한 특성 해석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.142-151
    • /
    • 1999
  • Linear Pulse Motors (LPM) are used a field where SImOth linear motion is required, and it's position accuracy higher than that of a lead According to the advanUlge such as simplicity of rrechanical frarre, high reliability, precise open-loop operation, low inertia etc. LPM is awlied largely where it have made motor of this kind more and rmre attractive in many application areas such as factory automation and high speed positioning. This paper is researched to analyze for force characteristics of hybrid LPM with high accuracy and repeatability. Both the thrust and normal force are very sensitive to the airgap and tooth pitches of the forcer and platen. Here, the thrust shows a high content while the normal force is much higher than the thrust. For magnetic circuits of hybrid LPM is the complicated structure, the finite element rrethod (FEM) is employed with suitable rrethod for calculating the force. Therefore, both the virtual work principle and maxwell stress tensor have been used.n used.

  • PDF

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.