• Title/Summary/Keyword: maxwell nanofluid

Search Result 3, Processing Time 0.023 seconds

Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field

  • Gharsseldien, Z.M.;Awaad, A.S.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 2022
  • This paper studied the peristaltic transport of upper convected Maxwell nanofluid through a porous medium in a heated (isothermal) symmetric vertical channel. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. These phenomena are modeled mathematically by a differential equations system by taking low Reynolds number and long-wavelength approximation, the yield differential equations have solved analytically. A suggested new technique to display and discuss the trapping phenomenon is presented. We discussed and analyzed the pumping characteristics, heat function, flow velocity and trapping phenomena which were illustrated graphically through a set of figures for various values of parameters of the problem. The numerical results show that, there are remarkable effects on the vertical velocity, pressure gradient and trapping phenomena with the thermal change of the walls.

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

Experimental Investigation of Thermal Conductivities of EG-based ZnO Nanofluids Manufactured Using Pulsed Wire Evaporation Method (전기선 폭발법에 의해 제작된 에틸렌 글리콜 기반 ZnO 나노유체의 열전도도)

  • Kim, Hyun-Jin;Hwang, Kyo-Sik;Shin, Hyun-Kyo;Rhee, Chang-Kyu;Lee, Gyung-Ja;Yoon, Jong-Ho;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.111-115
    • /
    • 2012
  • In this paper, the thermal conductivities of ethylene glycol. based ZnO nanofluids manufactured using the pulsed wire evaporation method are experimentally measured using the transient hot wire method at temperatures in the range of $10^{\circ}C$ to $50^{\circ}C$. For this purpose, ethylene glycol.based ZnO nanofluids with 1%, 3%, and 5.5% volume fractions were manufactured using the pulsed wire evaporation method. Transmission electron microscopy (TEM) was performed to investigate the suspension stability of the ethylene glycol.based ZnO nanofluids. Based on the experimental results, the thermal conductivities of ethylene-glycol-based ZnO nanofluids increase with increasing volume fractions of ZnO nanofluids. The maximum enhancement of the thermal conductivity is 26.5% for a volume fraction of 5.5% at $22^{\circ}C$. Finally, the experimental results are compared with conventional models such as the Maxwell and Hasselman & Johnson models.