• Title/Summary/Keyword: maximum-efficiency tracking

Search Result 211, Processing Time 0.026 seconds

Research on Variable Constant Current Efficiency Measuring Device for Solar Panel to Reuse (태양광 패널 재사용을 위한 가변 정전류 기반의 효율 측정장치에 관한 연구)

  • Sang-Jin Woo;Dae-Heon Kim;Jae-Jin Lee;Oh-Min Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • This paper relates to the development of a device for measuring the efficiency of a solar panel based on a variable constant current, and proposed a standard for reuse of the solar panel. By applying a variable constant current circuit to a solar panel efficiency measuring device, it was easy to apply a maximum power point tracking (MPPT) algorithm. In addition, a load dispersion method was applied to measure the efficiency of a high-capacity solar panel. and it is possible to solve a problematic thermal runaway during a MOSFET parallel operation by applying the load dispersion method. As a result of the experiment, the solar panel efficiency measuring device was able to accommodate a large solar panel of 350W, which is the maximum measurement goal. In this paper, the validity was confirmed through the 310W solar panel efficiency measurement experiment collected after removal.

Regulated Incremental Conductance (r-INC) MPPT Algorithm for Photovoltaic Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1544-1553
    • /
    • 2019
  • The efficiency of photovoltaic generation systems depends on the maximum power point tracking (MPPT) technique. Among the various schemes presented in the literature, the incremental conductance (INC) method is one of the most frequently used due to its superb tracking ability under changes in insolation and temperature. Generally, conventional INC algorithms implement a simple duty-cycle updating rule that is mainly found on the polarity of the peak-power evaluation function. However, this fails to maximize the performance in both steady-state and transient conditions. In order to overcome this limitation, a novel regulated INC (r-INC) method is proposed in this paper. Like the compensators in automatic control systems, this method applies a digital compensator to evaluate the INC function and improve the capability of power tracking. Precise modeling of a new MPPT system is also presented in the optimized design process. A 120W boost peak power tracker is utilized to obtain comparative test results and to confirm the superiority of the proposed method over existing techniques.

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.

MPPT Control of Photovoltaic Generation Using MLPO Method (MLPO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2064-2075
    • /
    • 2011
  • In this paper, robust multi-level perturbation and observation (MLPO) maximum power point tracking (MPPT) control are presented of the environmental change including the solar radiation and temperature. Because the maximum power point of the Photovoltaic (PV) is changing according to the solar radiation and temperature, the technology which traces the maximum power point in order to increase the power efficiency is recognized as the very important part. The general requirement for the MPPT is that system is simple, the cost is inexpensive, the PV tracking function and output change are small. Conventional perturbation and observation (PO) method is a simple system but there is the disadvantage that an efficiency of system becomes low. In addation, the incremental conductance (IC) control is required expensive CPU because of a large of calculations. In order to solve this problem, in this paper, the MLPO MPPT control using the method diversifying the step size according to the environment condition is presented. The validity of the MLPO method presenting from this paper is proved through analyzing the solar power generation output error at the steady state.

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.

Research of the PV Tracking System (태양광 추적장치 연구)

  • Seo, Myeong-Hwan;Kim, Yoon-Sik;Hong, Jin-Woo;Lee, Hee-Joon;Park, Sang-Koo;Kim, Sun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2951-2957
    • /
    • 2010
  • In solar industry the development of tracking PV power generation devices progresses favorably because of its efficiency, comparing with fixed PV power generation devices. Tracking PV power generation device are not only preserving the amount of solar radiation per unit area but also maximizing the efficiency of solar battery. Therefore accurate and low-priced solar position tracking devices are very important to improve the economical efficiency and lower invest price. This research is concerned with solar position algorithm with uncertainties equal to 1 minute($0.016^{\circ}$) using the mathmatics and astronomg. Proposed algorithm in this paper, lowers the implementation price and improves power generation efficiency. In view of the result so far achieved, maximum error has 30 secend($0.008^{\circ}$). And the solar cell generating system applied by this algorithm showed the gain of the fixed type contrast average 23W(about 18%).

Improvement of Power Generation of Microbial Fuel Cells using Maximum Power Point Tracking (MPPT) and Automatic Load Control Algorithm (최대전력점추적방법과 외부저항 제어 알고리즘을 이용한 미생물연료 전지의 전력생산 최대화)

  • Song, Young Eun;Kim, Jung Rae
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • A microbial fuel cell (MFC) and bioelectrochemical systems are novel bioprocesses which employ exoelectrogenic biofilm on electrode as a biocatalyst for electricity generation and various useful chemical production. Previous reports show that electrogenic biofilms of MFCs are time varying systems and dynamically interactive with the electrically conductive media (carbon paper as terminal electron acceptor). It has been reported that maximum power point tracking (MPPT) method can automatically control load by algorithm so that increase power generation and columbic efficiency. In this study, we developed logic based control strategy for external load resistance by using $LabVIEW^{TM}$ which increases the power production with using flat-plate MFCs and MPPT circuit board. The flat-plate MFCs inoculated with anaerobic digester sludge were stabilized with fixed external resistance from $1000{\Omega}$ to $100{\Omega}$. Automatic load control with MPPT started load from $52{\Omega}$ during 120 hours of operation. MPPT control strategy increased approximately 2.7 times of power production and power density (1.95 mW and $13.02mW/m^3$) compared to the initial values before application of MPPT (0.72 mW and $4.79mW/m^3$).

Design of a Vibration Energy Harvesting Circuit With MPPT Control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2457-2464
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using a piezoelectric device is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the electric power-voltage characteristic of a piezoelectric device to deliver the maximum power to load. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. Simulation results show that the maximum power efficiency of the designed circuit is 91%, and the chip area except pads is $700{\mu}m{\times}730{\mu}m$.

Design of Vibration Harvesting Circuit using the MPPT control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yun, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.392-395
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using the piezoelectric element has been designed. MPPT (maximum power point tracking control) control function has been implemented to deliver the maximum power to the load by using the electric power-voltage characteristic of the piezoelectric element. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the full wave rectifier circuit and delivers the maximum available power to the load. The vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. The maximum power efficiency is 91%, and the chip area except pads is $1,100{\mu}m{\times}730{\mu}m$.

  • PDF

3-Point MPPT Algorithm under Dynamic Irradiation for Photovoltaic PCS (일사량 급변 시 유용한 3-Point 태양광 인버터 MPPT 알고리즘)

  • Kim, Dong-Gyun;Park, Kwan-nam;Cho, Sang-Yoon;Lee, Young-Kwoun;Yu, Gwon-Jong;Song, Seung-Ho;Choy, Ick;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.469-470
    • /
    • 2016
  • Since efficiency of maximum power point tracking (MPPT) is important for photovoltaic systems, a number of MPPT algorithms have already been researched for other environment, however, the most of MPPT algorithms can't track maximum point in dynamic irradiation. In this paper, P&O and 3-Point MPPT which is more specialized in dynamic irradiation are compared in basis of European Efficiency Test(EN50530). The efficiency of 3-Point MPPT algorithm is proved by simulation and experiment. In result, 3-Point MPPT shows higher efficiency in dynamic irradiation and less affected by environment than P&O.

  • PDF