• Title/Summary/Keyword: maximum transfer

Search Result 1,607, Processing Time 0.024 seconds

A Study on the Heat Transfer Augmentation by Using Wire-mesh Impinging Water Jet (충돌수분류계(衝突水噴流系)에서 와이어 메쉬를 사용(使用)한 열전달(熱傳達) 증진(增進)에 관(關)한 연구(硏究))

  • Na, G.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • This paper presents the promotion of heat transfer through the use of wire-mesh screens. To improve heat transfer in an impingement water system, the wire-mesh screens are installed between the nozzle-to-heater surfaces. When the wire-mesh screens are not employed, this report exhibits the maximum heat transfer and the secondary maximum value at the stagnation point. But in case of using the wire-mesh screens, the transfer coefficient value of maximum heat exists at the stagnation point, and the second maximum value doesn't occur. Therefore, the heat transfer is more improved than 4~6 times that of the mean Nusselt numbers of simple water jet system, Also, within the region presented in this study, the heat transfer was promoted by using the wire-mesh screens at the stagnation point ; thus, the heat transfer was more increased than 6-7. 5 times that of simple water jet system.

  • PDF

Enhancement of Wireless Power Transfer Efficiency Using Higher Order Spherical Modes

  • Kim, Yoon Goo;Park, Jongmin;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • We derive the Z-parameters for the two coupled antennas used for wireless power transfer under the assumption that the antennas are canonical minimum scattering antennas. Using the Z-parameter and the maximum power transfer efficiency formula, we determine the maximum power transfer efficiency of wireless power transfer systems. The results showed that the maximum power transfer efficiency increases as the mode number or the radiation efficiency increases. To verify the theory, we fabricate and measure two different power transfer systems: one comprises two antennas generating $TM_{01}$ mode; the other comprises two antennas generating $TM_{02}$ mode. When the distance between the centers of the antennas was 30 cm, the maximum power transfer efficiency of the antennas generating the $TM_{02}$ mode increased by 62 % compared to that of the antennas generating the $TM_{01}$ mode.

Structural Analysis of Synthetic Heat Transfer Fluid Boiler (열매체보일러의 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3352-3357
    • /
    • 2012
  • In this paper, 3-dimensional designing program CATIA was used to design in order to investigate causes of a fire in a boiler using synthetic heat transfer fluid. And also structural analysis was conducted to the boiler by using 3-dimensional finite element code, ANSYS. Maximum temperature, maximum stress, and maximum strain were obtained at the normal condition and after fire.

A Study on the Development of Power Transfer Capability Calculation Algorithm Considering Initial Maximum Power Transfer Capability (초기최대수송능력을 고려한 수송능력산정 알고리즘의 개발에 관한 연구)

  • Kim, Yong-Ha;Lee, Bum;Moon, Jung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2003
  • This paper presents a power transfer capability calculation algorithm considering initial maximum power transfer capability. In this method initial maximum power transfer capability is calculated first. Then, the initial value of active power outputs of generators is gotten for power transfer capability calculation. The proposed method is applied to IEEE-24 Reliability Test System and the results show the effectiveness of the method.

A Study on the Ink Transfer Using the Roughness and Substrate Energy of Substrate in Roll to Roll Printing Systems (롤투롤 인쇄 시스템에서의 기판 소재의 거칠기와 표면에너지를 이용한 잉크 전이에 대한 연구)

  • Shin, Kee-Hyun;Kim, Ho-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • An ink transfer is modeled and experimentally verified using roll-to-roll electric direct gravure printing process. The ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and experimented by the electric printing machine in FDRC for the relations of the maximum ink transfer rates to the printing pressure, the operating speed, the operating tension, the surface roughness of substrates, and the contact angle between substrate and silver ink. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the physical parameter in a printing process and contact angle between substrates and ink. Numerical simulations and experimental studies were carried out to verify performances of the proposed ink transfer model. Results showed that the proposed ink transfer model was effective for the prediction of the amount of transferred ink to the substrate in a direct gravure printing systems.

Fatigue and Vibration Analysis on Engine Parts (엔진 부품에 대한 피로 및 전동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.321-325
    • /
    • 2010
  • This study analyzes the results with the simulation of heat transfer, structural stress, fatigue and vibration on main parts of engine. The maximum temperature is shown by $300.73^{\circ}C$ on the upper part of piston with the heat transfer. Maximum total deformation or equivalent stress is shown by 65.31mm or 21364MPa respectively at the upper plane of piston with the structural analysis inclusive of heat transfer. The minimum life is shown by the cycle less than $10^7$ at the part of crankshaft with the fatigue analysis. The frequency with the maximum amplitude of deformation is shown by 14Hz. Maximum total deformation or equivalent stress is shown respectively by 93.99mm on the upper plane of piston or 42625MPa at the part connected with crack shaft and connecting rod at 14Hz. The durability of engine design can be verified by using the analysed result of this study.

Local Heat Transfer Measurement and Numerical Analysis in the Ventilated Disc Brake with Semi-Cylindrical Grooves (반 실린더형 홈을 가진 벤틸레이티드 디스크 브레이크에서의 국소열전달 측정 및 수치 해석)

  • Lee Dae-Hee;Park Sung-Bong;Lim Chang-Yul;Kim Heung-Seop;Lee Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.587-593
    • /
    • 2006
  • A ventilated disc brake having semi-cylindrical grooves has been proposed to improve the thermal judder by way of heat transfer enhancement. The local heat transfer coefficients were measured in the flow passage of disc brake. These measured local heat transfer data were utilized to do the finite element numerical analysis which predicts the maximum temperatures on the disc brake. The results show that the maximum temperatures on the disc surface with semi-cylindrical grooves are approximately 35.2% lower than those without them.

A Study on the Thermal Stress Analysis of a Piston in a Turbocharged Diesel Engine (터보 디젤엔진 피스톤의 열응력 해석에 관한 연구)

  • 국종영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2001
  • We determined the transfer coefficient through the analysis of three dimensional temperature distribution in comparison with the measured temperature on the piston in the turbocharged diesel engine. And we analyzed the thermal stress and the thermal deformation with that heat transfer coefficient by using finite element method. According to this results, we found that maximum tempetature range of the piston appeared at the upper part of the piston crown and that the heat transfer coefficient of the upper part of the piston is smaller than that of the lower one. It showed that the maximum thermal deformation is shown at the edge of the upper part of piston and that the maximum thermal stress was shown on the lower part of the piston crown. Finally, we defined the method of determination of a piston heat transfer analysis by using measured temperature on the piston and analyzed temperature with finite element method.

  • PDF

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.

An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions (착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구)

  • 이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.