• Title/Summary/Keyword: maximum traffic flow rate

Search Result 28, Processing Time 0.018 seconds

The Development of Capacity Estimation Methods from Statistical Distribution of Observed Traffic Flow (관측교통량의 통계적 분포에 의한 도로교통용량 산정 기법에 관한 연구 -이상적인 조건하의 고속도로 기본구간 대상-)

  • 김용걸;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.1
    • /
    • pp.167-183
    • /
    • 1995
  • The objective of study is to evaluate highway capaicty estimation alternative and to develop capacity from statistical distribution of observed traffic flow. Speed-Volume relation is analyzed from vehicle's headway distribution eliminating the long headway by confidence intervals 99%, 95%, 90%. Capacity estimate alternatives were evaluated from 95% , 90%, 85% level of cummulative distribution of observed hourly traffic flow adjusted to confidence intervals. The result of investigation revealed that maximum hourly rate of flow is 2, 130pcu at confidence interval of 995, 2, 233pcu at 95%, 2, 315pcu at 90% respectively. Compared to the capacity of 2, 200pcu per hour per lane used in HCM and KHCM(Korea Highway Capacity Manual), capa챠y appears to correspond to confidence interval of 95%. Using the traffic flow rate at confidence interval of 95% the maximum hourly flow rate is 2, 187pcu at 95% of cummulative volume distribution, 2, 153pcu at 90%, 2, 215pcu at 85%. The study suggests that raional capacity esimation alternative is to take the 95% of cummulative distribution of observed hourly traffic flow at 95% confidence headway interval eliminating 5% long headway.(i.e. 95-95 rule)

  • PDF

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

Estimation of Capacity at Two-Lane Freeway Work Zone Using Traffic Flow Models of Each Vehicle-Type (차종별 교통류 모형을 이용한 편도 2차로 고속도로 공사구간 용량 산정)

  • Park, Yong-Jin;Kim, Jong-Sik
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2011
  • The purpose of this study is to estimate the capacity of two-lane freeway work zone blocking one lane using traffic flow models of each vehicle-type. Firstly, three traffic flow models of three different vehicle-types were developed using the data collected from each at the beginning and the ending point of the work zone. For each model, the maximum flow rate of three vehicle-types were calculated respectively. Maximum flow rate at the work zone was recalculated using passenger car equivalent value and percentage of vehicle-type. Secondly, traffic flow model using passenger car equivalent volume data was developed using the data collected from each at the beginning and the ending point of the work zone. Maximum flow rate for the work zone was calculated along. Two values of maximum flow rates through the work zone were compared and evaluated as the capacity of the work zone. This study found that the maximum flow rate of the work zone at the beginning point was less than that at the ending point because of impedance such as lane changing behaviors before entering the work zone. The capacity of two-lane freeway work zone blocking one lane was estimated 1,800pcphpl.

Development of Analysis Model and Improvement of Evaluation Method of LOS for Freeway Merging Areas (고속도로 합류부 분석모형 개발 및 서비스수준 평가 기법 개선 연구)

  • Lee, Seung-Jun;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.115-128
    • /
    • 2006
  • The analytic methodology of a merging area in KHCM(2004) supposes that congestion nay occur when traffic demand is more than capacity However, in many cases, congestion on merging area occurs when summation of traffic demand of main line and ramp is less than capacity, and in present methodology analysis of how main line and ramp flow effect on congestion occurrence is difficult. In this study, the model that is able to estimate traffic flow condition on merging area in accordance with the combination of main line and ramp demand flow is developed. Main characteristic of the model is estimation of maximum possible throughput rate and maximum throughput rate according to the combination of main line and ramp demand flow. Through the estimation of maximum possible throughput rate and maximum throughput rate. it was Possible to predict whether congestion would occur or not and how much maximum throughput rate and congestion would be on merging area. On one hand, in present LOS evaluation methodology on merging area, congestion state is determined as un-congested flow if demand flow is less than capacity. Therefore, to establish more reasonable In evaluation method, new criterion of LOS evaluation on merging area was searched based on the model of this study.

A study on the reduction ratio of highway capacity in accordance to occurrence of accident (사고발생에 따른 고속도로용량감소율에 관한 연구)

  • Lee, Seong-Hun;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.141-148
    • /
    • 2009
  • An inappropriate evaluation of capacity leads to the incorrect and impractical result due to the transfer of error to the analysis and the evaluation on highway system. The traffic accident which reduces the capacity of road temporarily generates unpredictable congestion, causing difficulties in congestion management. Therefore, this research aims on the measurement of the capacity of the road in accordance to the speed at the accident which is a basic factor when performing analysis. Based on the given approach, the behavior of a vehicle in highway is understood to develop model of critical gap and model of maximum flow rate with respect to the speed of traffic flow. With the established model, the reduction rate of the capacity in highway system at the accident is measured. The result shows that the capacity is reduced by 37% when the speed of the traffic flow is 40km/h. Although the developed model can't be verified clearly, this research has shown that the reduction rate of the capacity in road system has a close relation to the speed.

Development of Adjustment Factors under Day and Night Conditions for Freeway Capacity to Improve Traffic Safety (교통안전 향상을 위한 주야 변화에 따른 고속도로 용량 보정계수 개발에 관한 연구)

  • Kim, Young Sun;Lee, Sang Soo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.107-115
    • /
    • 2015
  • PURPOSES: This study analyzes the characteristics of traffic flow on freeway sections under daytime and nighttime conditions to improve traffic safety, and suggests a method to estimate an accurate freeway capacity value that reflects these characteristics. METHODS : The trends and differences in capacity were investigated using comprehensive field data collected under both daytime and nighttime conditions on freeway sections with designated speeds of 80, 100, and 120 kph. RESULTS : The capacity values under nighttime driving conditions were reduced by 3.3%, 6.9%, and 8.8% at 80, 100, and 120 kph, respectively. Several nighttime adjustment factors were deduced for each designated speed category from the analysis results. CONCLUSIONS : It is expected that more accurate capacity values can be estimated for freeway sections under nighttime conditions by applying the resulting adjustment factors. In addition, traffic safety will be improved through the increased efficiency of traffic management on these freeway sections.

LOS Evaluation of Urban Freeway by the Occupancy Characteristics (점유율 특성을 이용한 도시고속도로의 서비스수준(LOS) 평가에 관한 연구)

  • Kim, Tae gon;Moon, Byoung Keun;Jo, In Kook;Jung, Yu Na
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.335-345
    • /
    • 2009
  • Generally, density is used as a measure of effectiveness (MOE) of the level of service (LOS) for the basic segment of the roadway facility, but can not express the operational condition of the roadway facility properly because there can be an error in the computed density compared with the density measured in the field. Thus, the purpose of this study is to investigate the real-time traffic characteristic data (traffic flow, speed, occupancy, headway, spacing, etc.) from the detectors installed on the mainline section of urban freeway under the study, analyze the maximum flow rate from the relationship between the real-time traffic characteristics collected, and evaluate the LOS criteria within the basic segment of the urban freeway based on the relationship between the occupancy and the v/c ratio depending on the level of service.

Dynamic Capacity Concept and its Determination for Managing Congested Flow (혼잡교통류 관리를 위한 동적 용량의 개념 및 산정방법)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.159-166
    • /
    • 2004
  • The capacity concept presented in the Highway Capacity Manual is for steady-state traffic flow assuming that there is no restriction in downstream flowing, which is traditionally used for planning, design, and operational analyses. In the congested traffic condition, the control objective should be to keep the congested regime from growing and to recover the normal traffic condition as soon as possible. In this control case, it is important to predict the spatial-temporal pattern of congestion evolution or dissipation and to estimate the throughput reduction according to the spatial-temporal pattern. In this context, the new concept of dynamic capacity for managing congested traffic is developed in terms of spatial-temporal evolution of downstream traffic congestion and in view of the 'input' concept assuming that flow is restricted by downstream condition rather than the 'output' concept assuming that there is no restriction in downstream flowing (e.g. the mean queue discharge flow rate). This new capacity is defined as the Maximum Sustainable Throughput that is determined based on the spatial-temporal evolution pattern of downstream congestion. And the spatial-temporal evolution pattern is estimated using the Newell's simplified q-k model.

A Study on an Adaptive AQM Using Queue Length Variation

  • Seol, Jeong-Hwan;Lee, Ki-Young
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The AQM (Active Queue Management) starts dropping packets earlier to notify traffic sources about the incipient stage of congestion. The AQM improves fairness between response flow (like TCP) and non-response flow (like UDP), and it can provide high throughput and link efficiency. In this paper, we suggest the QVARED (Queue Variation Adaptive RED) algorithm to respond to bursty traffic more actively. It is possible to provide more smoothness of average queue length and the maximum packet drop probability compared to RED and ARED (Adaptive RED). Therefore, it is highly adaptable to new congestion condition. Our simulation results show that the drop rate of QVARED is decreased by 80% and 40% compare to those of RED and ARED, respectively. This results in shorter end-to-end delay by decreasing the number of retransmitted packets. Also, the QVARED reduces a bias effect over 18% than that of drop-tail method; therefore packets are transmitted stably in the bursty traffic condition.

Characteristics Analysis of Traffic Flow in BRT section according to Market Penetration Rates of Autonomous Vehicles (자율주행자동차 혼입률에 따른 BRT 구간 교통류 특성 분석)

  • Do, Myungsik;Chae, Un Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.531-544
    • /
    • 2024
  • The purpose of this study is to analyze traffic flow characteristics according to the market penetration rate (MPR) of autonomous vehicles (AV) on road sections where bus rapid transit (BRT) is actually operating. Furthermore, the maximum traffic volume was set through estimation of future traffic demand, and traffic flow characteristics were analyzed through traffic simulation for each scenario considering of a combination of BRT introduction and AV's MPR. To test statistical significance, Kruskal-Willis test and Jonckheere-Terpstra test were used to examine the impact of the market penetration rate of Autonomous vehicles on travel time and delay time etc. At the same time, the existence of the order relationship among travel time data according to the market penetration rate of autonomous vehicle was examined. As a result of the analysis, it was founded that the travel time significantly decreased as the MPR of AV increases in both intermittent flow and continuous flow environments. In particular, in the case of continuous flow, the law of increasing returns was satisfied in the effect of increasing travel speed and reducing travel time as the MPR of AV increases. The results of this study are expected to be used as a basic information for design plans for road reconstruction and space utilization after the commercialization of AV in the future.