• Title/Summary/Keyword: maximum torque value

Search Result 121, Processing Time 0.029 seconds

Maximum Torque Control of PMSM Drive in Field weakening Region (약계자 영역에서 PMSM 드라이브의 최대 토크제어)

  • 이홍균;이정철;김종관;정동화
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Permanent magnet synchronous motor(PMSM) is widely used in many applications such as an electric vehicle. compressor drives of air conditioner and machine tool spindle drives. PMSM drive system have become a popular choice in various application, due to their excellent power to weight ratio. This paper is proposed maximum torque control for field weakening operation of PMSM drive. At low speeds, the reluctance torque is used to maximize the output for a given current level. This is achieved maximum torque per ampere(MTPA) by selecting an optimal value of the direct stator current component. At high speeds, the system reaches a point at which the inverter will not be able to supply the desired voltage. In this case it is necessary to make use of an increased value the direct current component. The proposed control algorithm is applied to PMSM drive system, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

Speed Control for Field Weakening Operation of PMSM Drive (PMSM 드라이브의 약계자 운전을 위한 속도제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Jung Tack-Gi;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.297-299
    • /
    • 2002
  • This paper is proposed maximum torque control for electric vehicle drive. At low speeds, the reluctance torque is used to maximize the output for a given current level. This Is achieved maximum torque per ampere(MTPA) by selecting an optimal value of the direct stator current component. At high speeds, the system reaches a point at which the inverter will not be able to supply the desired voltage In this case it Is necessary to make use of an increased value the direct current component. The proposed control algorithm is applied to PMSM drive system, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

  • PDF

Maximum Torque Control of SynRM Drive with Artificial Intelligent Controller (인공지능 제어기에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.257-259
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive learning mechanism-fuzzy neural network(ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^{i}d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Performance of Adaptive Maximum Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives (유도전동기 드라이브에서의 단위전류당 최대토크적응 제어기의 다운전점에서의 성능 연구)

  • Kwon, Chun-Ki;Kong, Yong-Hae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.584-593
    • /
    • 2018
  • The highly efficient operation of induction motors has been studied in the past years. Among the many attempts made to obtain highly efficient operation, Maximum Torque Per Amp (MTPA) controls in induction motor drives were proposed. This method enables induction motor drives to operate very efficiently since it achieves the desired torque with the minimal stator current. This is because the alternate qd induction motor model (AQDM) is a highly accurate mathematical model to represent the dynamic characteristics of induction motors. However, it has been shown that the variation of the rotor resistance degrades the performance of the MTPA control significantly, thus leading to its failure to satisfy the maximum torque per amp condition. To take into consideration the mismatch between the actual value of the rotor resistance and its parameter value in the design of the control strategy, an adaptive MTPA control was proposed. In this work, this adaptive MTPA control is investigated in order to achieve the desired torque with the minimum stator current at multiple operating points. The experimental study showed that (i) the desired torque was accurately achieved even though there was a deviation of the order of 5% from the commanded torque value at a torque reference of 25 Nm (tracking performance), and (ii) the minimum stator current for the desired torque (maximum torque per amp condition) was consistently satisfied at multiple operating points, as the rotor temperature increased.

Analysis on Torque of Solid Iron Rotor Induction Motor (In Rotor without Slot) (강괴철심회전자를 가진 유도전도기의 토오크 해석)

  • Yun Jong Lee
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.5-8
    • /
    • 1972
  • The purpose of this paper is, as a preliminary step to study on the method of analysing the torque of toothed solid iron rotor, to make an inquiry into the torque calculation formula of homogenious solid iron rotor without slot. The starting point for its theoretical analysis on torque generated by eddy current in solid iron rotor is based on the maximum air gap flux density. In solid rotor induction motor, torque generated by rotor core is considerably large in the range of large slip. The calculated value and observed value on the test machine are also examined in this paper.

  • PDF

Experimental Assessment of Drag Torque of Wet Clutch (습식 클러치 드래그 토크 특성의 실험적 평가)

  • Kim, Hansol;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.269-274
    • /
    • 2017
  • Currently, fuel efficiency becomes one of critical issues for automotive industries as concerns about environmental and energy problems grow. In an automatic transmission of an automobile, a drag torque due to a viscous drag of a fluid between friction and clutch plates is one of factors that degrade fuel economy. In this work, the drag torque characteristics of a wet clutch was experimentally investigated with respect to rotational speed, temperature of automatic transmission fluid (ATF), and gap between friction and clutch plates. The experimental results showed that drag torque increases to a certain level, and then decrease to the steady state value with increasing rotational speed. This behavior may be associated with two-phase flow of air and ATF at gap between friction and clutch plates. Also, it was found that the maximum drag torque value decreased as ATF viscosity decreases with increasing temperature. However, it was shown that the point at which the maximum drag torque occurs was not significantly affected by the ATF temperature. In addition, maximum drag torque was found to decrease as the gap between friction and clutch plates increased from 0.1 mm to 0.2 mm. Furthermore, it was observed that the generation of maximum drag torque was delayed as the gap increased. The outcomes of this work are expected to be helpful to gain a better understanding of drag torque characteristic of a wet clutch, and may therefore be useful in the design of wet clutch systems with improved performance.

Effect of tightening torque on the connection stability of a custom-abutment implant system: 3D finite element analysis (지대주 나사 조임 토크가 맞춤형 지대주 임플란트 시스템의 연결부 안정성에 미치는 영향: 3차원 유한 요소 해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • Purpose: This study aims to examine the stress distribution effect of tightening torques of different abutment screws in a custom-abutment implant system on the abutment-fixture connection interface stability using finite element analysis. Methods: The custom-abutment implant system structures used in this study were designed using CATIA program. It was presumed that the abutment screws with a tightening torque of 10, 20, and 30 N·cm fixed the abutment and fixture. Furthermore, two external loadings, vertical loading and oblique loading, were applied. Results: When the screw tightening torque was 10 N·cm, the maximum stress value of the abutment screw was 287.2 MPa that is equivalent to 33% of Ti-6Al-4V yield strength. When the tightening torque was 20 N·cm, the maximum stress value of the abutment screw was 573.9 MPa that is equivalent to 65% of Ti-6Al-4V yield strength. When the tightening torque was 30 N·cm, the maximum stress value of the abutment screw was 859.6 MPa that is similar to the Ti-6Al-4V yield strength. Conclusion: As the screw preload rose when applying each tightening torque to the custom-abutment implant system, the equivalent stress increased. It was found that the tightening torque of the abutment influenced the abutment-fixture connection interface stability. The analysis results indicate that a custom-abutment implant system should closely consider the optimal tightening torque according to clinical functional loads.

Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller (적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Kang, Sung-Joon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

Maximum Torque Control of IPMSM for Electric Vehicle Drive (전기자동차 구동을 위한 IPMSM의 최대 토크제어)

  • 이홍균;이정철;정동화
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • Interior permanent magnet synchronous motor (IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM for electric vehicle drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ${^i}_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for electric vehicle drive, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

Maximum Torque Control of SynRM Using Multi-PI Controller (Multi-PI 제어기를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.956-957
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using Multi-PI controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ids for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled Multi-PI controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the Multi-PI controller.

  • PDF