• 제목/요약/키워드: maximum temperature rise

검색결과 223건 처리시간 0.029초

RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망 (Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios)

  • 서가영;최연우;안중배
    • 대기
    • /
    • 제29권5호
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

Simulation of IWR Based on Different Climate Scenarios

  • Junaid, Ahmad Mirza;Arshad, M.;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.519-519
    • /
    • 2016
  • Upper Chenab Canal (UCC) is a non-perennial canal in Punjab Province of Pakistan which provides irrigation water only in summer season. Winter and summer are two distinct cropping season with an average rainfall of about 161 mm and 700 mm respectively. Wheat-rice is common crop rotation being followed in the UCC command area. During winter season, groundwater and rainfall are the main sources of irrigation while canal and ground water is used to fulfil the crop water requirements (CWR) during summer. The objective of current study is to estimate how the irrigation water requirements (IWR) of the two crops are going to change under different conditions of temperature and rainfall. For this purpose, 12 different climatic scenarios were designed by combining the assumptions of three levels of temperature increase under dry, normal and wet conditions of rainfall. Weather records of 13 years (2000-2012) were obtained from PMD (Pakistan Meteorological Department) and CROPWAT model was used to simulate the IWR of the crops under normal and scenarios based climatic conditions. Both crops showed a maximum increase in CWR for temperature rise of $+2^{\circ}C$ i.e. 8.69% and 6% as compared to average. Maximum increment (4.1% and 17.51% respectively) in IWR for both wheat and rice was recorded when temperature rise of $+2^{\circ}C$ is coupled with dry rainfall conditions. March & April during winter and August & September during summer were the months with maximum irrigation requirements. Analysis also showed that no irrigation is needed for rice crop during May and June because of enough rainfall in this area.

  • PDF

The Use of Semi-Adiabatic Calorimetry for Hydration Studies of Cement Paste

  • Chung, Chul-Woo;Kim, Ji-Hyun;Lee, Soo-Yong
    • 한국건축시공학회지
    • /
    • 제16권2호
    • /
    • pp.185-192
    • /
    • 2016
  • The semi-adiabatic calorimetry technique is a robust and easy technique that can be used to measure the temperature rise of concrete. This method is often used for investigating the maturity of concrete, as well as to predict maximum temperature rise of mass concrete using various heat loss compensating models. Semi-adiabatic calorimetry can also be used for predicting setting time of concrete. However, it has seldom been used to investigate the hydration characteristics of various cement paste samples. In this research, semi-adiabatic calorimetry and X-ray diffraction methods were used to investigate the hydration characteristics of 3 different ASTM type I Portland cements. First derivative of temperature rise (dT/dt) curve was used to isolate individual peaks. Based on the results of the experiments, a combination of dT/dt curve with XRD could be used to successfully identify hydration at a specific time period, showing its potential to be used as an alternative tool for hydration studies of cement-based materials.

가변 레이저 빔 패턴에 따른 열영향 해석 (Analysis of Heat Transfer by Various Laser Beam Patterns in Laser Material Process)

  • 최해운
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.37-44
    • /
    • 2018
  • In laser material processing for high thermal conductivity, the thermal effect of laser beam shape was examined through computer simulations. In this paper, a circular beam with a focal radius of $500{\mu}m$, an elliptical beam with a major axis of 4 mm and a minor axis of 1 mm, and a rotating beam with a focal radius of $500{\mu}m$ and an angular velocity of 5 rad/sec were compared. Simulation results showed that there was no clear difference in the maximum temperature between the circular focus and the elliptical shape, but the heating and cooling rates were different. The simulation result for a laser beam rotating in a circular pattern with a radius of 5 mm showed an asymmetric temperature rise due to the combination of linear and rotational motion. At points where the rotational and linear speeds combined, the temperature gradually rose and reached the maximum temperature; whereas at points where the rotational and linear speeds were attenuated, the temperature tended to gradually decrease after reaching the maximum temperature. Based on the results of this study, the authors expect to be able to optimize laser material processing by designing patterns of laser beams.

누적열 방지 및 비닐 접착품질 향상을 위한 온도 제어형 임펄스 씰러 (Impulse Sealer)의 개발 (Development of Temperature Controlled Impulse Sealer for Preventing Cumulative Heat and Improving Sealing Quality)

  • 김인수;김성민;서종철
    • 한국포장학회지
    • /
    • 제25권3호
    • /
    • pp.117-123
    • /
    • 2019
  • 일반적인 임펄스 씰러의 시간제어 방식은 누적열(시작점의 온도가 상승)로 인해 포장품질의 저하를 초래하기 때문에 본 연구에서는 온도제어 방식을 이용한 임펄스 씰러의 누적열 상승 특성 및 포장품질을 조사하였다. 순간(Impulse) 방식의 특성상 아주 짧은 시간에 높은 온도를 올려주기 때문에 정확한 제어는 힘들지만, 가장 중요한 최고점의 온도를 일반 시간제어 대비 특정 편차 범위 내에서 유지하여 주기 때문에 우수한 포장품질을 확보하는 것이 가능하였다. 온도제어의 결과로 최고점의 온도는 128.9℃이며 최고와 최저의 오차율은 -4%에서 7.4%, 시간제어 최고점의 온도가 190.3℃로 설정온도인 120℃ 대비 70.3℃ 상승을 하였으며, 약 59%의 온도 상승률을 보였다. 온도제어와 시간 제어의 최고점의 온도차는 61.4℃로 뚜렷한 온도차를 보이며, 시간제어에서는 접착품질의 저하를 확인할 수 있었다. 즉, 온도제어 방식은 시간제어 방식 대비 우수한 접착품질을 나타내었다. 본 연구개발을 통하여 임펄스 씰러의 온도제어 방식은 연속작업에서의 온도상승을 조절하고 최소화할 수 있는 효과적인 대안이 될 수 있음을 확인하였다. 한편, 시간제어 방식 임펄스 씰러의 온도제어 방식으로의 전환을 위해서는 오차율이 일정치 않은 문제, 온도제어를 위해 필요한 온도센서(박판센서)의 품질 확보 및 수급 문제, 온도센서 자체의 내구성 향상문제, 그리고 신규방식의 높은 가격 문제 등을 추가적으로 고려하여야 한다.

가스차단기 모선부의 온도상승 예측 프로그램 개발 (Development of the Temperature Prediction Program for the Bus Bar of a Gas-insulated Switchgear)

  • 함진기;김영기;이희원;김진수;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.169-174
    • /
    • 2003
  • The thermal design of the bus bar of a Gas-Insulated Switchgear(GIS) becomes important since the current-carrying capacity of the GIS is limited by maximum operating temperature. In order to predict temperature rise of the bus bar, a program has been developed. Various heat sources possibly generated in the bus bar are calculated in the program. To estimate temperature rises at the bus bar caused by the heat balance between the heat generation and heat transfer, the finite volume method as well as the $4^{th}$ order Runge-Kutta method has been employed. In the experiments, temperature rises at conductor, contact part and external tank are measured for full-scale gas-insulated bus bars. The comparisons of the predicted values of the heat balance calculation to those of the experiments are made. From the comparisons, it is concluded that the developed program can predict the temperature rise of the bus bar quite well.

  • PDF

밀가루의 열분해 특성과 활성화 에너지에 관한 연구 (A Study on the Activation Energy and Characteristics of the Heat Decomposition of Flour)

  • 권승렬;최재욱;이동훈;최재진
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.55-62
    • /
    • 2009
  • After examining the characteristics of the heat decomposition of the 80~120mesh flour using the Mini cup pressure vessel test and determining the apparent activation energy in a spontaneous combustion, the conclusion is as follows. The heat decomposition of flour occurs at around $100^{\circ}C$ and the peak for the maximum rise in pressure appears at around $290^{\circ}C$. The decomposition pressure against various temperature in the vessel shows the maximum value of $4.7kg/cm^2$ approximately at $440^{\circ}C$. When the thickness of the sample is 3cm, the maximum temperature and the critical temperature of ignition are $398^{\circ}C$ and $204.5^{\circ}C$, respectively; the critical temperature is $194.5^{\circ}C$ when the thickness of the sample is 5cm, and $182.5^{\circ}C$ when the sample is 7cm. In addition, the apparent velocity calculated using the method of least squares is 35.0407Kcal/mol.

800kV 차단부의 무부하 압력상승 측정 (Measurement of Pressure-Rise at No-Load in 800kV Model Interrupter)

  • 장기찬;송기동;정진교;송원표;김정배;박경엽;신영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.475-478
    • /
    • 1995
  • The variations of cold gas properties such as density, pressure, temperature and velocity which are dependent each other are closely related with the dielectric recovery of an interrupter. So, the pressure-rises at no-load in the puffer cylinder and in front of fixed arcing contact of 800kV model interrupter were measured experimentally using pressure transducers of strain gage type and semiconducting type, respectively. The maximum value of pressure-rise in the puffer cylinder increased almost linearly from 7.6 bar at the minimum operated pressure to 9.7 bar at the maximum operated pressure, while the pressure-rise in front of fixed arcing contact was independent with the operated pressure. The measured values will be utilized in verifying the self-developed cold flow analysis program and as an input of commercialized CFD program package.

  • PDF

전력기기용 Al/Cu 복합 부스바의 통전용량 설계 및 특성 평가 (Transport Capacity Design and Characteristics Evaluation of Al/Cu Composite Busbar for Power Equipments)

  • 배준한;김해준
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.628-632
    • /
    • 2006
  • This paper deals with the electric and thermal characteristics of the composite busbar composed of aluminum and copper. When AC current is flowing in Cu busbar used widely in conservative equipments like power cable, transformer, and switchgear & controlgear most current is concentrated on the surface of the busbar by the skin effect. Therefore, if the Cu region in the busbar having low current density is replaced with aluminum, we can largely reduce the product cost and weight of the busbar. To conform the performance of the composite busbar, we designed and fabricated a test Al/Cu composite busbar. Maximun temperature rise of the busbar was $35^{\circ}C$ when 1600 Arms of AC current was applied to the test composite busbar($120mm{\times}10mm$). Based on test results, we can expect to make the low-priced and light power equipments using the Al/Cu composite busbar.

광물질 혼화재 혼합 고강도콘크리트의 제성질 개선에 대한 연구 (A Study on the Improvement of Properties of High Strength Concrete Using Mineral Admixtures)

  • 문한영;문대중;하상욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 1997
  • The mineral admixtures, ground granulated blast furnace slag (GSB) and fly ash (FA), were mixed with ordinary portland cement(OPC) in order to reduce temperature rise and slump loss in concrete. In according to concrete replaced with 30% of GBS, the compressive strength of that developed to 574 kg/$\textrm{cm}^2$ at age of 28days and maximum temperature decreased to the extent of $5^{\cire}C$. When GBS and FA are mixed with concrete, it can be estimated that mix proportions of them have to be taken into consideration.

  • PDF