• Title/Summary/Keyword: maximum resistance

Search Result 1,751, Processing Time 0.026 seconds

A Study on Running Resistance of Rolling Stock (철도차량의 주행저항에 관한 연구)

  • Kim, Eung-Cheon;Lee, Jae-An;Lee, Ha-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1782-1793
    • /
    • 2008
  • Republic of korea has begun operating high speed train service according as KTX service operation starts in 2004. Also, EMU whose maximum speed is over 150 kph will be starting to service with electrification and improvement of existing railroad. Moreover, metropolitan electric railways have begun an express service to increase scheduled speed. Therefore, running resistance of rolling stock becomes more important factor effects on the performance. Running resistance of rolling stock is the factor which is necessary for the performance or operation plan of rolling stock, and it's related to rolling friction, slip friction, drag force, gradient, acceleration, curvature, tunnel condition and so on. It is possible to be calculated by CFD (Computational Fluid Dynamics). However it is predicted by experimental equation from running resistance test because of the complex calculation and manifold variables. In this paper, studies about running resistance of rolling stock is introduced, and each term of experimental equation is studied through theoretical approximation. Also, running resistance of rolling stock is estimated by the result of running resistance test, and effects being related to friction, drag force, gradient is examined.

  • PDF

ANALYTICAL SIMULATION OF TRAVEL RESISTANCE OF THE RUBBER CRAWLER SYSTEM FOR FARM MACHINERY

  • Inaba, S.;Inoue, E.;Hashiguchi, K.;Matsuo, T.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.139-145
    • /
    • 2000
  • The mechanism of the inner resistance in a rubber crawler system has been investigated to reduce the power requirement (Kitano et al. 1994). The rolling resistance of the track roller, which is one of the major inner resistances, was measured for seven different vertical loads. The rolling resistance changed periodically and could be classified into three types. In case of the vertical load less than 500N, the rolling resistance was almost constant. For the vertical load greater than 500N, the maximum value of the rolling resistance increased. Further more in case of the vertical load greater than 1200N, negative resistance appeared. Analytical simulation of the travel resistance based on experimental results and static equilibrium equations derived from three-dimension mechanical model for the rubber crawler system. It was found that the simulation method was carried out to evaluate the travel resistance occurred by the rolling resistance of the track roller. The rolling resistance for each track roller arrangement and effects of the lug phase in the right and left rubber crawler could be estimated quantitatively.

  • PDF

Early-onset sepsis in a neonatal intensive care unit in Beni Suef, Egypt: bacterial isolates and antibiotic resistance pattern

  • Fahmey, Sameh Samir
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.8
    • /
    • pp.332-337
    • /
    • 2013
  • Purpose: To identify the frequency of bacterial isolates in early-onset neonatal sepsis (EONS) and their antimicrobial resistance pattern. Methods: A retrospective study of EONS was conducted at the Beni Suef University Hospital from September 2008 to September 2012. A case of EONS was defined as an infant who had clinical signs of infection or who was born to a mother with risk factors for infection, and in whom blood culture obtained within 72 hours of life grew a bacterial pathogen. Results: Of 673 neonates screened, there were 138 positive blood cultures (20.5%) (confirmed EONS). Of the recovered isolates, 86.2% were gram-negative pathogens. Klebsiella pneumoniae (42.8%), Enterobacter cloacae (22.5%), and Escherichia coli (13.8%) were the commonest isolated organisms. The most common gram-positive microorganism was Staphylococcus aureus accounting for only 12 isolates (8.7%). All Klebsiella isolates and 93% of Enterobacter isolates were resistant to ampicillin. Gram-negative pathogens had the maximum overall sensitivity to imipenem, cefepime, and ciprofloxacin; whereas, gram-positive isolates were most susceptible to vancomycin, imipenem, and piperacillin. Conclusion: K. pneumoniae was the predominant causative bacteria of EONS followed by E. cloacae and E. coli. There was a high resistance to ampicillin. Imipenem had the maximum overall activity against the causative bacteria. Continuous surveillance is needed to monitor the changing epidemiology of pathogens and antibiotic sensitivity.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.

The Effect of MBS on the Compatibility of Scrap PVB/PMMA Blends (Scrap PVB/PMMA 블렌드에 미치는 MBS의 상용화효과(相溶化效果))

  • Choi, Hyeong-Ki;Lee, Yong-Moo;Yoon, Ju-Ho;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 1996
  • PVB was blended with PMMA in order to recycle scraped PVB material which recovered in the safety glass manufactories. The purpose of this research on PVB/PMMA blend was applied with excellent tackiness and transparency of PVB as a material of high strength to make the maximum use. Also, the blending of PVB with PMMA was aimed at the increase of impact strength of PMMA because the elastic property of PVB might decrease the brittleness of PMMA due to the lack of inner impact resistance. Izod impact resistance was propotional to increase the content of PVB, which was predominantly increased in the addition of 10phr above MBS. High rate impact resistance showed a tendency to Increase but it showed a tendency to decrease maximum load and energy if the contents of PVB increased. On the other hand total energy and ductile index showed a tendency to increase excellent impact resistance in the addition of MBS contents. As a result of observed surface of PVB/PMMA blends, the size of PVB domain increased distribution homogenuously, in the addited MBS contents increased it showed distribution homogeneously and partially a wetability.

  • PDF

Heat Flow Analysis in the Newly Developed Wave Heat Sink by Computational Simulation (전산모사에 의한 웨이브 히트싱크의 열유동 특성 해석)

  • Lee In-Gyu;Lee Sang-Woong;Kang Kae-Myung;Chang Si-Young
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.870-875
    • /
    • 2004
  • Heat flow characteristics in the newly developed Wave Heat Sink were analyzed under natural and forced convections by Icepak program using the finite volume method. Temperature distribution and thermal resistance of Wave Heat Sink with/without air vent hole on the top of fin were compared with those of a commercial Al extruded heat sink(Intel Heat Sink). Under the natural convection, the maximum temperature was $45.1^{\circ}C$ in the air vent hole typed Wave Heat Sink, which was superior to that of Intel Heat Sink. The thermal resistance was $2.51^{\circ}C/W$ in the air vent hole typed Wave Heat Sink, and it changed to $2.65^{\circ}C/W\;and\;2.16^{\circ}C/W$ with changes of gravity direction and fin height, respectively. Under the forced convection, the maximum temperature became lower than that under the natural convection. In addition, the thermal resistance lowered in the air vent hole typed Wave Heat Sink with higher fin height and it decreased with increasing the air flux.

A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method (용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구)

  • 김재철;박기헌;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

Changes in Total Work, Blood Viscosity and Hematocrit during Maximum Strength Type and Endurance Type Resistance Exercise (최대근력 저항운동과 근지구력 저항운동시 총운동량, 혈액점도 및 적혈구용적률의 변화)

  • Jeong, Hwan-Jong;Jang, Tae-Su;Kim, Ki-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.271-279
    • /
    • 2021
  • The purpose of this study was to investigate the effects of maximum and endurance resistance exercises on total work, blood viscosity, and erythrocyte volume ratio. The study subjects were selected as 15 men in their twenties with 12 months or more of resistance exercise experience, and the bench press 1RM was measured before the experiment, and the experiment for each condition was cross-allocated at intervals of one week, and the maximum repetition was performed in 6 sets. As a result, the total amount of exercise showed that the muscular endurance strength was higher than that of the maximum muscular strength (p<.001), and the blood viscosity and erythrocyte volume ratio were higher after exercise than before (p<.01) regardless of the total exercise amount. In summary, it was found that blood viscosity was not affected by exercise intensity and amount of exercise, and increased with one-time resistance exercise. This is clinically significant in constructing a resistance exercise program, and it is considered to be a reference material in creating an exercise program for clinical patients related to vascular disease.

Discharge Capacity of PBD and Deep Soft Soil Improvement (PBD의 배수특성과 대심도 지반개량)

  • 구본효
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.585-592
    • /
    • 2002
  • Discharge capacity of PBD is the most important factor of specification items to control any product of PBD. There is no standard specification for the PBD. Because the degree of discharge capacity is related to well resistance, install depth, maximum strain etc in the field. Discharge capacity test of PBD, permeability test of filter are conducted using PBD materials used in Korea. This paper proposes the critical discharge capacity for deep PBD under condition of non well resistance based upon their test and theoretical calculation. It was found that discharge capacity more than about 10 ㎤/sec is enough to undergo designing of deep PBD without well resistance.

  • PDF