• Title/Summary/Keyword: maximum power transfer

Search Result 320, Processing Time 0.028 seconds

Enhancement of Wireless Power Transfer Efficiency Using Higher Order Spherical Modes

  • Kim, Yoon Goo;Park, Jongmin;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • We derive the Z-parameters for the two coupled antennas used for wireless power transfer under the assumption that the antennas are canonical minimum scattering antennas. Using the Z-parameter and the maximum power transfer efficiency formula, we determine the maximum power transfer efficiency of wireless power transfer systems. The results showed that the maximum power transfer efficiency increases as the mode number or the radiation efficiency increases. To verify the theory, we fabricate and measure two different power transfer systems: one comprises two antennas generating $TM_{01}$ mode; the other comprises two antennas generating $TM_{02}$ mode. When the distance between the centers of the antennas was 30 cm, the maximum power transfer efficiency of the antennas generating the $TM_{02}$ mode increased by 62 % compared to that of the antennas generating the $TM_{01}$ mode.

A Study on the Development of Power Transfer Capability Calculation Algorithm Considering Initial Maximum Power Transfer Capability (초기최대수송능력을 고려한 수송능력산정 알고리즘의 개발에 관한 연구)

  • Kim, Yong-Ha;Lee, Bum;Moon, Jung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2003
  • This paper presents a power transfer capability calculation algorithm considering initial maximum power transfer capability. In this method initial maximum power transfer capability is calculated first. Then, the initial value of active power outputs of generators is gotten for power transfer capability calculation. The proposed method is applied to IEEE-24 Reliability Test System and the results show the effectiveness of the method.

Calculation of Active Power Transfer Capability using Repeated Power Flow Program

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The power transfer capability is determined by the thermal, dynamic stability and voltage limits of the generation and transmission systems. The voltage stability depends on the reactive power limit and it affects the power transfer capability to a great extent. Then, in most load flow analysis, the reactive power limit is assumed as fixed, relatively different from the actual case. This paper proposes a method for determining the power transfer capability from a static voltage stability point of view using the IPLAN which is a high level language used with PSS/E program. The f-V curve for determining the power transfer capability is determined using Repeated Power Flow method. It Is assumed that the loads are constant and the generation powers change according to the merit order. The maximum reactive power limits are considered as varying similarly with the actual case and the effects of the varied maximum reactive power limits to the maximum power transfer capability are analyzed using a 5-bus power system and a 19-bus practical power system.

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.

Method for Adjusting Single Matching Network for High-Power Transfer Efficiency of Wireless Power Transfer System

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyungsoo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.962-971
    • /
    • 2016
  • A wireless power transfer (WPT) system is generally designed with the optimum source and load impedance in order to achieve the maximum power transfer efficiency (PTE) at a specific coupling coefficient. Empirically or intuitively, however, it is well known that a high PTE can be attained by adjusting either the source or load impedance. In this paper, we estimate the maximum achievable PTE of WPT systems with the given load impedance, and propose the condition of source impedance for the maximum PTE. This condition can be reciprocally applied to the load impedance of a WPT system with the given source impedance. First, we review the transducer power gain of a two-port network as the PTE of the WPT system. Next, we derive two candidate conditions, the critical coupling and the optimum conditions, from the transducer power gain. Finally, we compare the two conditions carefully, and the results therefore indicate that the optimum condition is more suitable for a highly efficient WPT system with a given load impedance.

Efficient Maximum Power Tracking of Energy Harvesting Using a ${\mu}$Controller for Power Savings

  • Heo, Se-Wan;Yang, Yil-Suk;Lee, Jae-Woo;Lee, Sang-Kyun;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.973-976
    • /
    • 2011
  • This letter describes an efficient technique for maximum power point tracking (MPPT) of an energy harvesting device. It is based on controlling the device voltage at the point of maximum power. Using a microcontroller with a power saving technique, the MPPT algorithm maintains the maximum power with low power consumption. An experiment shows that the algorithm maximizes the energy transfer power using an energy management IC fabricated in a 0.18-${\mu}m$ process. Compared to direct energy transfer to a battery, the proposed technique is more efficient for low-energy harvesting under variable conditions.

The Inductor Characteristics of the PFC Converter for Wireless Power Transfer Inverter (무선전력전송 인버터 전원용 PFC 컨버터의 인덕터 특성)

  • LIM, Seongjin;KIM, Changsun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.534-535
    • /
    • 2012
  • The characteristics of wireless power transfer is achieved at high frequencies in short range magnetic resonant wireless power transfer system. Use PFC pre-regulator for power supply of high frequency inverter. Supplied power to high power factor and high efficiency. Accordingly, the input voltage is 110V-220V. The designed of 175W Class with the output voltage of 385V. As a experiment result, maximum power factor and maximum efficiency measured 99% and 97% respectively. Therefore, in this paper, the design of a inductor which is the most important element in PFC converter for short range magnetic resonance wireless power transfer system was studied. Used an CS330125 core through the designed of 175W class. Examination results power loss was 0.2%.

  • PDF

Analysis of Safety Distance and Maximum Permissible Power of Resonant Wireless Power Transfer Systems with Regard to Magnetic Field Exposure

  • Park, Young-Min;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.450-459
    • /
    • 2015
  • In this paper, the safety distances and maximum permissible power (MPP) of resonant wireless power transfer systems are defined and derived with regard to human exposure to electromagnetic field (EMF). The definition is based on the calculated induced current density and electric field in the standard human model located between the transmitting and receiving coil. In order to avoid the adverse health effects such as stimulation of nerve tissues, the induced current and electric field must not exceed the basic restriction values specified in EMF safety guidelines. The different combinations of diameters of the coils and the distance between the two coils are investigated and their effects are analyzed. Two versions of EMF safety guidelines (ICNIRP 1998 and ICNIRP 2010) are used as bases for safety distance calculation and the difference between the two guidelines are discussed.

Novel Unified Criterion to Optimize Power Coupling at Optical Directional Couplers with Discontinuity Interface (불연속 경계면을 갖는 광 방향성 결합기의 최적 결합효율을 위한 새로운 통합기준)

  • Ho, Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • Novel unified criterion to optimize power coupling at optical directional couplers with discontinuous input/output interfaces is first defined and evaluated numerically. The numerical results reveal that maximum power transfer between guiding slabs without discontinuous interfaces is dominated by conventional phase-matching condition while the guiding structures with discontinuous interfaces has maximum power transfer at an equi-partition condition, which describes the power distribution condition between two rigorous modes propagating through optical couplers.

  • PDF