• Title/Summary/Keyword: maximum power tracking

Search Result 569, Processing Time 0.023 seconds

Development of the Path Generation and Control System for Unmanned Weeding Robot in Apple Orchards (사과 과원 무인 제초를 위한 작업 경로 생성 및 경로 제어 시스템 개발)

  • Jintack Jeon;Hoseung Jang;Changju Yang;Kyoung-do Kwon;Youngki Hong;Gookhwan Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Weeding in orchards is closely associated with productivity and quality. The customary weeding process is both labor-intensive and time-consuming. To solve the problems, there is need for automation of agricultural robots and machines in the agricultural field. On the other hand, orchards have complicated working areas due to narrow spaces between trees and amorphous terrain. Therefore, it is necessary to develop customized robot technology for unmanned weeding work within the department. This study developed a path generation and path control method for unmanned weeding according to the orchard environment. For this, the width of the weeding span, the number of operations, and the width of the weeding robot were used as input parameters for the orchard environment parameters. To generate a weeding path, a weeding robot was operated remotely to obtain GNSS-based location data along the superheated center line, and a driving performance test was performed based on the generated path. From the results of orchard field tests, the RMSE in weeding period sections was measured at 0.029 m, with a maximum error of 0.15 m. In the steering period within row and steering to the next row sections, the RMSE was 0.124 m, and 0.047 m, respectively.

Dynamic-Response-Free SMPS Using a New High-Resolution DPWM Generator Based on Switched-Capacitor Delay Technique (Switched-Capacitor 지연 기법의 새로운 고해상도 DPWM 발생기를 이용한 Dynamic-Response-Free SMPS)

  • Lim, Ji-Hoon;Park, Young-Kyun;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • In this paper, we suggest the dynamic-response-free SMPS using a new high-resolution DPWM generator based on switched-capacitor delay technique. In the proposed system, duty ratio of DPWM is controlled by voltage slope of an internal capacitor using switched-capacitor delay technique. In the proposed circuit, it is possible to track output voltage by controlling current of the internal capacitor of the DPWM generator through comparison between the feedback voltage and the reference voltage. Therefore the proposed circuit is not restricted by the dynamic-response characteristic which is a problem in the existing SMPS using the closed-loop control method. In addition, it has great advantage that ringing phenomenon due to overshoot/undershoot does not appear on output voltage. The proposed circuit can operate at switching frequencies of 1MHz~10MHz using internal operating frequency of 100 MHz. The maximum current of the core circuit is 2.7 mA and the total current of the entire circuit including output buffer is 15 mA at the switching frequency of 10 MHz. The proposed circuit has DPWM duty ratio resolution of 0.125 %. It can accommodate load current up to 1 A. The maximum ripple of output voltage is 8 mV. To verify operation of the proposed circuit, we carried out simulation with Dongbu Hitek BCD $0.35{\mu}m$ technology parameter.

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Movement range and behavior characteristics of Pagrus major by acoustic telemetry in Byeonsan Peninsular, Korea (음향 텔레메트리에 의한 변산반도에서의 참돔(Pagrus major)의 이동 범위 및 행동 특성)

  • HEO, Gyeom;HEO, Min-A;KANG, Kyoungmi;HWANG, Doo-Jin;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.34-44
    • /
    • 2021
  • In order to collect basic information of response behavior of red seabream (Pagrus major) during pilling, works for constructing wind power station in Byeonsan Peninsular, Korea were investigated. Four cultured red seabream CRB1 to CRB4 [total length (TL): 27.1 ± 1.0 cm; body weight: 359 ± 30 g] were tagged with an acoustic tag and used in experiment. CRB1 and CRB2 to CBR4 were released on the sea surface at same time around the constructing site of the wind power plant on September 22, 2017 and July 18, 2018, respectively. The tracking of the CRB1 to CRB2 and CRB3 to CRB4 were conducted for two hours, approximately, using VR100 receiver including a directional hydrophone and VR2W receivers array consisted of 19 presence/absence receivers (VR2W receivers), respectively. The underwater noise level before (no pile driving works) and during pile driving works was measured 116.0-118.0 dB (re 1��Pa) and a maximum of 160 dB (re 1��Pa), respectively. CRB1 moved about 6.0 km with average swimming speed of 80.2 ± 20.5 cm/s for 2.1 hours without pile driving work. The average water depth of the sea bed on the route of CRB1 was 9.1 ± 0.4 m. CRB2 moved about 7.3 km with the average swimming speed of 96.8 ± 27.1 cm/s for 2.1 hours with pile driving work. The water depth of the sea bed on the route of CRB2 was 11.9 ± 0.6 m. At results of the Rayleigh's z-test two fishes CRB1 and CRB2 showed significant directionality in the movement (p < 0.01). Movement mean angles of CRB1 and CRB2 were 92.7 and 251.8°, respectively. CRB2, CRB3 and CRB4 exhibited the escaping behavioral response from the noise of source during the pile driving work. The swimming speed of the CRB2 exposed on the heavy underwater noise stimuli due to the pile driving work was 1.21 times faster than that of the CRB1 exposed on the ambient underwater noise in the study site.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.

Localization Development of Axial Fan for KM-SAM Multi-function radar (KM-SAM 다기능레이더용 축류형 송풍기 국산화 개발)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Seo, Dae-Sue
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • This paper describes the localization development of an axial fan for KM-SAM multi-function radar. The multi-function radar, which is constantly affected by the external environment, is a key instrument for detecting and tracking low and medium altitude threat targets. Operating this equipment smoothly requires a fan for controlling the internal temperature and humidity. Presently, all such fans are imported. To solve these problems, localization development research was proposed. The development of localization includes analysis of requirements through review of related technical reports such as original equipment and system equipment specification, prototype design, and verification of design requirement through performance test and environmental test. The study results are described. The blower consisted of an axial fan with guide vanes and the motor was designed to generate a maximum airflow of 970 CFM and a wind pressure of 4.8 IWG. Six prototypes were manufactured for performance evaluation. In addition, for reliable data acquisition, AC power supply, fan performance tester and data acquisition equipment were designed and tested. All prototypes were verified as having design requirements equal to or better than those of imports.

Deisgn of adaptive array antenna for tracking the source of maximum power and its application to CDMA mobile communication (최대 고유치 문제의 해를 이용한 적응 안테나 어레이와 CDMA 이동통신에의 응용)

  • 오정호;윤동운;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2594-2603
    • /
    • 1997
  • A novel method of adaptive beam forming is presented in this paper. The proposed technique provides for a suboptimal beam pattern that increases the Signal to Noise/Interference Ratio (SNR/SIR), thus, eventually increases the capacity of the communication channel, under an assumption that the desired signal is dominant compared to each component of interferences at the receiver, which is precoditionally achieved in Code Division Multiple Access (CDMA) mobile communications by the chip correlator. The main advantages of the new technique are:(1)The procedure requires neither reference signals nor training period, (2)The signal interchoerency does not affect the performance or complexity of the entire procedure, (3)The number of antennas does not have to be greater than that of the signals of distinct arrival angles, (4)The entire procedure is iterative such that a new suboptimal beam pattern be generated upon the arrival of each new data of which the arrival angle keeps changing due tot he mobility of the signal source, (5)The total amount of computation is tremendously reduced compared to that of most conventional beam forming techniques such that the suboptimal beam pattern be produced at vevery snapshot on a real-time basis. The total computational load for generating a new set of weitht including the update of an N-by-N(N is the number of antenna elements) autocovariance matrix is $0(3N^2 + 12N)$. It can further be reduced down to O(11N) by approximating the matrix with the instantaneous signal vector.

  • PDF

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.