• 제목/요약/키워드: maximum power point

검색결과 915건 처리시간 0.026초

An Improved Variable Step Size MPPT Algorithm Based on INC

  • Xu, Zhi-Rong;Yang, Ping;Zhou, Dong-Bao;Li, Peng;Lei, Jin-Yong;Chen, Yuan-Rui
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.487-496
    • /
    • 2015
  • In order to ensure that photovoltaic (PV) systems work at the maximum power point (MPP) and maximize the economic benefits, maximum power point tracking (MPPT) techniques are normally applied to these systems. One of the most widely applied MPPT methods is the incremental conductance (INC) method. However, the choice of the step size still remains controversial. This paper presents an improved variable step size INC MPPT algorithm that uses four different step sizes. This method has the advantages of INC but with the ability to validly adjust the step size to adapt to changes of the PV's power curve. The presented algorithm also simultaneously achieves increased rapidity and accuracy when compared with the conventional fixed step size INC MPPT algorithm. In addition, the theoretical derivation and specific applications of the proposed algorithm are presented here. This method is validated by simulation and experimental results.

A Novel Maximum Power Point Tracking Algorithm Considering the partially shaded in PV generating system (태양광 모듈의 미스매치를 고려한 새로운 최대전력 추종제어 알고리즘 연구)

  • Shim, Jae-Hwe;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권spc3호
    • /
    • pp.220-227
    • /
    • 2012
  • The maximum power point tracking(MPPT) is important part pf PV generating system, because of nonlinear characteristic of PV array. Many MPPT algorithms have been developed and proposed, but partially shaded in PV generating system, these algorithms can not track maximum power point. This paper explains the partially shaded conditions in the PV generating system and describes a novel new MPPT algorithm. To verify the proposed novel algorithm, PSIM simulation tool is used in this paper, and proper 3kW PV module modeling is made. As a result, the right maximum power point(11PP) of PV PCS can be tracked directly under shading effect for any mismatched condition in solar array.

MPPT Control of Photovoltaic System using HBPI Controller (HBPI 제어기를 이용한 태양광발전 시스템의 MPPT 제어)

  • Ko, Jae Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제61권12호
    • /
    • pp.1864-1871
    • /
    • 2012
  • This paper proposes the hybrid proportional integral(HBPI) controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, in order to solve these problems, this paper proposes HBPI controller that is adjusted gain of conventional PI control using fuzzy control, and the maximum power point tracks using this controller. The validity of the controller proposed in this paper proves through the results of the comparisons.

Pattern Analysis of Maximum Power Point by means of Solar Cell Module Array Simulation (태양전지 모듈 어레이 시뮬레이션을 이용한 최대전력점 패턴분석)

  • Jeong, Ji-Won;Park, In-Gyu;Hwang, Kuk-Yeon;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제23권1호
    • /
    • pp.72-79
    • /
    • 2013
  • In the paper, a pattern analysis to decide whether the 1st local peak power point near open circuit voltage is the global peak power point or not, in case that the voltage and current at the 1st local peak power point are in a specific range, for Maximum Power Point Tracking on the photo voltaic power conversion system. When a solar cell panel array is shaded partially, multi-local peak power points can occur. That makes it hard to search the global peak power point. Through Tableau analysis using by piecewise linear solar cell model, V-I characteristic of a solar cell panel array circuit when partial shading problem happens, is simulated. The global peak power and the local peak power points is confirmed by simulations. Voltage and current values and patterns of V-I characteristic are analyzed. The generating efficiency of the solar cell panel array is improved, when the solar cell panel array circuit is operated at the power point estimated by setting up specific range.

A Novel Hybrid MPPT Control for Photovoltaic System (태양광 발전시스템의 새로운 하이브리드 MPPT 제어)

  • Kim, Soo-Bin;Jo, Yeong-Min;Choi, Ju-Yeop;Song, Seung-Ho;Choy, Ick;Lee, Young-Kwon
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2014
  • 본 논문에서는 보편적으로 태양광 시스템에 적용되는 MPPT(Maximum Power Point Tracking) 기술들이 가지는 단점을 상호 보완하는 하이브리드 MPPT 제어 알고리즘을 제안하였다. 널리 사용되고 있는 MPPT 기술들을 비교하여 분석하였고, 이를 바탕으로 각 기술들의 단점을 상호 보완할 수 있는 요소들을 추출하여 MPPT 알고리즘에 적용하였다. 구현된 알고리즘은 최대전력점으로부터 동작점이 떨어져 있는 경우 빠르게 추적할 수 있는 속응성을 가지며, 정상상태에서는 안정도를 높이고, 국부적인 최대전력점(LMPP; Local Maximum Power Point) 발생 시 이를 감지하여 전체 특성 곡선의 최대전력점(GMPP; Global Maximum Power Point)을 찾아가도록 하였다. 또한 시뮬레이션을 통해 그 특성을 확인하였다.

  • PDF

State of the Art Review of Shading Effects on PV Module Efficiencies and Their Detection Algorithm Focusing on Maximum Power Point

  • Lee, Duk Hwan;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.21-28
    • /
    • 2014
  • This paper provides the up to date review of the shading effects on PV module performance and the associated detection algorithm related to the maximum power point tracking. It includes the brief explanations of the MMP variations due to the shading occurrence on the PV modules. Review of experimental and simulation studies highlighting the significant impacts of shading on PV efficiencies were presented. The literature indicates that even the partial shading of a single cell can greatly drop the entire module voltage and power efficiency. The MMP tracking approaches were also reviewed in this study. Both conventional and advanced soft computing methods such as ANN, FLC and EA were described for the proper tracking of MMP under shaded conditions. This paper would be the basic source and the comprehensive information associated with the shading effects and relevant MPP tracking technique.

The Improved Maximum Power Point Tracking Algorithm under varying of irradiance (일사량 변화를 고려한 개선된 MPPT 알고리즘)

  • Lee, Gwui-Han;Jung, Young-Seok;Lee, Youn-Seop;Cha, Han-Ju;KO, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • 제35권6호
    • /
    • pp.17-24
    • /
    • 2015
  • The MPPT(Maximum Power Point Tracking) techniques are employed in photovoltaic (PV) systems to maximize the PV array output power which depends on solar irradiance and temperature. The dynamic MPPT performance under varying irradiance conditions affects the impact on overall PV system performance. This paper presents the improved MPPT algorithm by the simulation comparison with other algorithms. The simulation models are made by the Matlab & Simulink. The result of simulation, the dynamic MPPT efficiency of proposed algorithm is higher than the other algorithms.

A Study on DSP Conrolled Photovoltaic System with Maximum Power Tracking

  • Ahn, Jeong-Joon;Kim, Jae-Mun;Kim, Yuen-Chung;Lee, Joung-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.966-971
    • /
    • 1998
  • The studies on the photovoltaic system are extensively exhaustible and broadly available resourse as a future energy supply. In this paper, a new maximum power point tracker(MPPT) using neural network theory is proposed to improve energy conversion efficiency. The boost converter and neural network controller(NNC) were employed so that the operating point of solar cell was located at the Maximum Power Point. And the back propagation algorithm with one input layer of two inputs(E, CE) and output layer(cnntrol value) was applied to train a neural network. Simulation and experimental results show that the performance of NNC in MPPT of photovoltaic array is better than that of controller based upon the Hill Climbing Method.

  • PDF

A New MPPT Scheme Based on Variable Step Size Incremental Conductance Method for PV Distributed Generation (태양광 발전시스템을 위한 새로운 가변폭 변조방식의 최대전력점 추종기법)

  • Ko, Eun-Gi;Kim, Jin-Ho;Park, Jun-Yeol;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.565-567
    • /
    • 2010
  • This paper proposes a new Maximum Power Point Tracking (MPPT) control algorithm for PV-Cell (Photo voltaic) based on Incremental Conductance MPPT algorithm. The ICN (Incremental Conductance method) algorithm is widely used due to the high tracking accuracy and adaptability to the rapidly changing isolation condition. In this paper, a modified ICN MPPT algorithm is proposed. This method adjusts automatically the step-size of reference to track the PV-Cell maximum power point, thus it improves the maximum power point tracking speed and accuracy.

  • PDF

A Novel Hybrid MPPT Method to Mitigate Partial Shading Effects in PV System (PV 시스템의 부분 음영을 대비한 새로운 하이브리드 MPPT 기법)

  • Kim, Dong-Gyun;Kim, Soo-Bin;Jo, Yeong-Min;Choy, Ick;Cho, Sang-Yoon;Lee, Young-Kwoun;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.21-22
    • /
    • 2015
  • The maximum power point of a photovoltaic array alters with changing atmospheric conditions, temperature conditions, shadow conditions, so it is required to track maximum power point. As much as MPPT(Maximum Power Point Tracking) is important in photovoltaic systems, many MPPT techniques have been developed. In this paper, several major existing MPPT methods are comparatively analyzed and novel hybrid MPPT algorithm is proposed. The proposed hybrid MPPT algorithm is developed in combination with traditional MPPT methods to complement each other for improving performance and mitigating partial shading effects. The proposed algorithm is validated by using PISIM simulation tool and experiment in 3kW system.

  • PDF