• Title/Summary/Keyword: maximum power point

Search Result 915, Processing Time 0.029 seconds

Characteristics of Maximization Output Control for Variable Wind Generation System Using IPMSG (IPMSG을 이용한 풍력 발전 시스템의 최대 출력화 제어 특성)

  • Mun, Sang-Pil;Heo, Young-Hwan;Kim, Jong-Suk;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.151-157
    • /
    • 2016
  • This paper proposes the variable wind generation system based on the direct torque control(DTC)for the interior permanent magnet synchronous generator. The proposed system can achieve the MPPT control without wind speed in addition to the speed and position sensorless control as well as the conventional current control method. The DTC has several advantages such as simply system configuration, ease of the flux weakening control and the sensorless control. The experimental results show the performance of the proposed wind generation system.

Review of the maximum power point tracking algorithms under rapid irradiance variations for photovoltaic system (일사량 급변에 따른 태양광시스템의 MPPT 알고리즘 비교 분석)

  • Kim, Eui-Jong;Yu, Byung-Gyu;Jung, Young-Seok;So, Jung-Hun;Yu, Gwon-Jong;Cha, Han-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1218-1219
    • /
    • 2007
  • 본 논문에서는 기존의 MPPT 기법인 Perturbation-and-Observation(이하 P&O)와 modified incremental conductance(이하 modified InCond)에 대해 Matlab과 PSIM의 인터페이스를 통해 일사량 급변시의 동작을 살펴본다. 기존의 논문에서는 각각의 일사량에 대해 효율 면에서 P&O가 InCond에 비해 높지만 일사량 급변시 과도상태에서는 InCond가 더 효율적으로 발표되었다. 이를 검토해 보기 위해 우선 실제 시판되는 태양전지 모듈에 대해 Matlab을 이용한 모델링을 실시함으로써 보다 정확한 값을 얻는다. 다음으로 PSIM을 이용하여 전력변환부와 제어기를 모델링하고 Matlab의 Simulink를 통해 인터페이스를 실시한다. 마지막으로 일사량 급변 시 과도상태와 급변 후에 MPPT 동작을 살펴본다.

  • PDF

The Characteristic of MPPT Control for Photovoltaic System by Temperature Compensation Effect (온도보상효과를 고려한 태양광 발전 시스템의 MPPT제어 특성)

  • Kang, Byung-Bog;Cha, In-Su;Yu, Gown-Jong;Jung, Myung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.437-439
    • /
    • 1995
  • In this paper, a mew maximum power point tracker (MPPT) using Fuzzy Controller is proposed to improve energy conversion efficiency. Temperature compensation effect means that Photovoltaic voltage is change in condition irradiation, temperature and ect. Fuzzy algorithm is applied to control Boost MPPT converter by Temperature compensation effect. In this paper, temperature compensation range is $-40^{\circ}C{\sim}+100^{\circ}C$.

  • PDF

Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems (태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상)

  • Park, Jiwon;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

Sensitivity study of parameters important to Molten Salt Reactor Safety

  • Sarah Elizabeth Creasman;Visura Pathirana;Ondrej Chvala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1687-1707
    • /
    • 2023
  • This paper presents a molten salt reactor (MSR) design parameter sensitivity study using a nodal dynamic modelling methodology with explicitly modified point kinetics equation and Mann's model for heat transfer. Six parameters that can impact MSR safety are evaluated. A MATLAB-Simulink model inspired by Thorcon's 550MWth MSR is used for parameter evaluations. A safety envelope was formed to encapsulate power, maximum and minimum temperature, and temperature-induced reactivity feedback. The parameters are perturbed by ±30%. The parameters were then ranked by their subsequent impact on the considered safety envelope, which ranks acceptable parameter uncertainty. The model is openly available on GitHub.

A Study on the Effects of Rotation Rate and Flow Rate on the Operating Characteristics in Centrifugal Pump (원심펌프에서 회전수 및 유량변화가 운전특성에 미치는 영향)

  • Lim, Kwang-Mook;Lee, Sung-Ill
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.56-62
    • /
    • 2019
  • This study examined effects of the operating characteristics of a pump according to the rotational speed of a pump and the change in flow rate when a centrifugal pump operates under the following conditions: regulated flow rate, head, rotational speed, and specific speed of 0.7 m/min, 8 m, 1750 rpm, an 182 (m, ㎥/min, rpm), respectively. The pump in the experiment did not have a guide vane and was connected directly to the rim, so that the rotational speed of the volute pump in a spiral or volute casing increased by 100 rpm from 1350 to 1750 rpm. The result of the relationship between the H-Q, L-Q, and 𝜂-Q characteristics and the dimensionless performance characteristics, such as the head coefficient, power coefficient and efficiency were studied. The change in pump performance could be estimated depending on the increase in the number of revolutions. The maximum efficiency of the pump was 52% with 1450 rpm, 0.165 ㎥/min flux, and 4.73 m of lift. The efficiency reached 50% with a maximum of 1750 rpm, 0.183 ㎥/min of flux, and 6.72 m of lift. The efficiency curve on the performance characteristics of the lift versus flux curve became oval not a curve from a quadratic equation that passes through the starting point according to the similarity law of the pump. Finally, when the flux coefficient increased, the power coefficient increased and the lift coefficient decreased. When the flux coefficient was 0.08, the maximum efficiency was 52%. Therefore, the change in flux affects the driving characteristics.

Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System (요요 진동시스템을 이용한 가동물체형 파력 발전 시스템의 기계-전기 통합해석 모델링 및 성능 해석)

  • Sim, Kyuho;Park, Jisu;Jang, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Performance Analysis of GT/ST Hybrid System for Marine Power Applications(under Conditions of Air-Cooled Gas Turbine) (가스터빈의 냉각공기를 고려한 선박동력용 GT/ST 하이브리드시스템의 성능 평가)

  • Kim, Sun-Hee;Jung, Byung-Gun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.586-594
    • /
    • 2012
  • A future type ship power system requires both economic and eco-friendliness. That is, this should be reduced the discharge quantity of air pollutants and green-house gases as well as have high energy efficiency. Recently, gas turbines have been realized a lot of technical development in terms of efficiency and safety, and are widening the example of their adoption to a GT/ST hybrid system in a power plant as well as an aviation use. This paper reviewed the performance characteristics of a GT/ST hybrid system of several ten MW class, not large capacity, with a simulation in order to evaluate the possibility of a GT/ST hybrid system for ships. The reviewed GT/ST hybrid system has maximum 49 % efficiency, has the highest efficiency point for TIT, and has a 70~75 % and 25~30 % load ratio for a gas turbine and a steam turbine respectively.

Video Image Analysis in Accordance with Power Density of Arcing for Current Collection System in Electric Railway (전기철도 집전장치의 아크량에 따른 비디오 이미지 분석)

  • Park, Young;Lee, Kiwon;Park, Chulmin;Kim, Jae-Kwang;Jeon, Ahram;Kwon, Sam-Young;Cho, Yong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1343-1347
    • /
    • 2013
  • This paper presents an analysis methods for current collection quality in catenary system by means of video image based monitoring system. Arcing is the sparking at the interface point between pantograph and contact wire when the electric trains have traction current values at speed. Percentage of arcing at maximum line speed is measurable parameters for compliance with the requirements on dynamic behaviour of the interface between pantograph and contact wire in accordance with requirement of IEC and EN standards. The arc detector and video is installed on a train aim at the trailing contact strip according to the travel direction. The arc detector presented and measured verity of value such as the duration and power density of each arc and the video image is measured a image when the arc is occurred in pantograph. In this paper we analysis of video image in accordance with power density of arcing from arc detector and compared with video image and power density of arcing so as to produce quality of arcing from image.