• 제목/요약/키워드: maximum likelihood method.

검색결과 999건 처리시간 0.024초

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Latent Variable Fit to Interlaboratory Studies

  • Jeon, Gyeongbae
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.885-897
    • /
    • 2000
  • The use of an unweighted mean and of separate tests is part of the current practice for analyzing interlaboratory studies, and we hope to improve on this method. We fit, using maximum likelihood(ML), a rather intricate, multi-parameter measurement model with the material's true value as a latent variable in a situation where quite serviceable regression and ANOVA calculations have already been developed. The model fit leads to both a weighted estimate of he overall mean, and to tests for equality of means, slopes and variances. Maximum likelihood tests for difference among variances poses a challenge in that the likelihood can easily becoem unbounded. Thus the major objective become to provide a useful test of variance equality.

  • PDF

Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring

  • Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.469-486
    • /
    • 2020
  • Entropy is an important term in statistical mechanics that was originally defined in the second law of thermodynamics. In this paper, we consider the maximum likelihood estimation (MLE), maximum product spacings estimation (MPSE) and Bayesian estimation of the entropy of an inverse Weibull distribution (InW) under a generalized type I progressive hybrid censoring scheme (GePH). The MLE and MPSE of the entropy cannot be obtained in closed form; therefore, we propose using the Newton-Raphson algorithm to solve it. Further, the Bayesian estimators for the entropy of InW based on squared error loss function (SqL), precautionary loss function (PrL), general entropy loss function (GeL) and linex loss function (LiL) are derived. In addition, we derive the Lindley's approximate method (LiA) of the Bayesian estimates. Monte Carlo simulations are conducted to compare the results among MLE, MPSE, and Bayesian estimators. A real data set based on the GePH is also analyzed for illustrative purposes.

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법 (Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM)

  • 김민정;석수영;김광수;정호열;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.512-522
    • /
    • 2002
  • 본 논문에서는 GMM(Gaussian Mixture Model)에 기반한 실시간문맥독립화자식별시스템[1][2]의 성능향상을 위하여 프레임선택(Frame Selection)방법과 프레임가중치(Weighting Model Rank)방법을 혼합한 hybrid방법을 제안한다. 본 시스템에서는 GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법과 인식 알고리즘으로 ML(Maximum Likelihood)을 기본적으로 사용하였다. 제안한 hybrid 방법은 두 단계로 이루어진다. 첫째, 화자모델과 테스트 데이터를 이용하여 프레임단위로 유사도를 계산하고, 가장 큰 유사도 값과 두 번째로 큰 유사도 값의 차를 계산한 후, 차가 문턱치보다 큰 프레임만을 선택한다 두 번째로, 선택되어진 프레임에서 계산되어진 유사도 값 대신에 가중치 값을 사용하여 전체 스코어를 계산한다. 특징 파라미터로서는 켑스트럼과 회귀계수를 사용하였으며, 학습과 테스트를 위한 데이터베이스는 채집기간이 다른 여러 데이터베이스들로 구성되어 있으며, 실험을 위한 데이터는 임의의 단어를 선택하여 사용하였다. 화자인식실험은 기본 시스템에 프레임선택방법, 프레임가중치방법, 제안한 Hybrid방법을 각각 적용하여 실험하였다. 실험결과, 프레임선택방법에 비해 평균 4%, 프레임가중치방법에 비해 평균 1%의 인식률 향상을 보여, 본 논문에서 적용한 hybrid방법의 유효성을 확인하였다.

  • PDF

비행시험을 통한 가로/방향 정적 미계수 추정에 관한 연구

  • 김응태;성기정;김영철;강상진
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.22-28
    • /
    • 2003
  • 본 논문은 소형 커나드 항공기의 정안전성 비행 시험을 통해 얻어진 자료를 분석해 정적 공력 미계수를 추정하는 방법을 제시하였다. 최대공산추정법을 통해 얻어진 공력 미계수와 본 논문에서 제시된 방법을 통해 얻어진 결과를 함께 비교하여 정확성을 검증하였다. 제시된 계수 추정 방법을 통해, 제한된 비행시험 자료만으로도 신뢰할 수 있는 공력 미계수를 추정할 수 있었다. 그 결과, 제시된 방법은 비행시험 데이터 해석에 보편적으로 사용되는 최대공산추정법과 같은 파라미터 식별기법의 결과를 검증, 보완할 수 있는 기준 데이터를 제공할 수 있다.

  • PDF

VELOCITY ANALYSIS OF M13 BY MAXIMUM LIKELIHOOD METHOD

  • Oh, K.S.;Lin, D. N. C.
    • 천문학회지
    • /
    • 제25권1호
    • /
    • pp.1-9
    • /
    • 1992
  • We present new approach to analysis of velocity data of globular clusters. Maximum likelihood method is applied to get model parameters such as central potential, anisotropy radius, and total mass fractions in each mass class. This method can avoid problems in conventional binning method of chi-square. We utilize three velocity components, one from line of sight radial velocity and two from proper motion data. In our simplified scheme we adopt 3 mass-component model with unseen high mass stars, intermediate visible stars, and low mass dark remnants. Likelihood values are obtained for 124 stars in M13 for various model parameters. Our preferred model shows central potential of $W_o=7$ and anisotropy radius with 7 core radius. And it suggests non-negligible amount of unseen high mass stars and considerable amount of dark remnants in M13.

  • PDF

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

유사-가능도 최대화를 통한 가우시안 프로세스 기반 음원분리 (Gaussian Processes for Source Separation: Pseudo-likelihood Maximization)

  • 박선호;최승진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권7호
    • /
    • pp.417-423
    • /
    • 2008
  • 본 논문에서는 각 음원이 시간적 구조를 가졌을 경우 음원들을 분리해내는 확률적 음원분리 방법을 제안한다. 이를 위해 각 음원의 시간적 구조를 가우시안 프로세스(Gaussian process)로 모델링하고 기존의 음원분리 문제를 유사-가능도 최대화 문제(pseudo-likelihood maximization)로 공식화한다. 본 알고리즘을 통해 얻어진 데이타의 유사-가능도는 정규 분포이며 이는 가우시안 프로세스 회귀방법(Gaussian process regression)을 통해 쉽게 계산이 가능하다. 음원분리의 역혼합 행렬은 경도(gradient) 기반최적화 기법을 통해 데이타의 유사-가능도를 최대화하는 해를 찾음으로써 구해진다. 여러 실험을 통하여 제안 알고리듬이 몇 가지 특정 상황에서 기존의 분리 알고리듬들에 비해 우수한 성능을 보임을 확인 할 수 있다.

A Study on One Factorial Longitudinal Data Analysis with Informative Drop-out

  • Lee, Ki-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1053-1065
    • /
    • 2006
  • This paper proposes a method in one-way layouts for longitudinal data with informative drop-out. When dropouts are informative, that is, correlated with unobserved data and/or the previous observed data, the simple imputation methods such as 'last observation carried forward' (LOCF) methods would arise the bias of the testing models. The maximum likelihood procedure combined with a logit model for the drop-out process is proposed to test treatment effects for one factorial designs and compared with LOCF method in two examples.

  • PDF