• Title/Summary/Keyword: maximum lateral resistance

Search Result 64, Processing Time 0.024 seconds

Lateral Behavior Characteristics of Short Pile in Sands by Model Tests (모형실험에 의한 사질토 지반에서 단말뚝의 수평거동 특성)

  • Kim, Jin-Bok;Park, Jong-Un;Han, Dae-Hwan;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.366-376
    • /
    • 2008
  • The model tests of short pile with very small pile length/diameter(L/D) were performed in this paper. Varying the pile diameter, length, and the lateral loading point, the lateral resistance and behavior of very short pile were studied in this model tests. The experimental and analytical results are as follows. The lateral ultimate resistance of short pile in sands was the maximum at the point of h/L=0.75, regardless of pile length/diameter(L/D). As the pile diameter is larger, the lateral ultimate resistance of pile with L/D=1 decreases a little and the lateral resistance increases according to the ratio of pile length/diameter. As the lateral loads are acting on the pile, the displacement of pile head is maximum at the pile top of h/L=0, but minimum at the middle point of the pile. And if the loading point is under the middle of pile, the displacement of pile head occurs oposite in the loading direction, but its magnitude is very small.

  • PDF

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

The Isoinertial Assessment of Lumbar Function in Patients with Chronic Low Back Pain (등저항성삼축동력계(Isostation B-200)를 이용한 만성 요통 환자들의 요추부 기능)

  • Bae, Sung-Il
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • Objective : This study obtained normative values for variable parameters of lumbar function with the isoinertial triaxial dynamometer in patients with chronic low back pain. Subjects and Methods : 30 patients(male 15, female 15) with chronic low back pain in this study. Variable parameters that were measured with the Isostation B-200 were lumbar range of motion, isometric maximum torques, and maximum velocities in three axis. Results : In patient male group mean R.O.M. was $82.9{\pm}12.5$ degrees in lumbar rotation, $76.5{\pm}17.1$ degrees in lumbar flexion/extension, and $64.3{\pm}14.5$ degrees in lumbar lateral flexion. In patient female group mean R.O.M. was $78.4{\pm}18.5$ degrees in lumbar rotation, $71.7{\pm}20.4$ degrees in lumbar flexion/extension, and $63.2{\pm}14.4$ degrees in lumbar lateral flexion. In patient male group mean isometric maximum torques was $64.7{\pm}23.8ft-lbs$ in lumbar rotation, $81.1{\pm}42.0ft-lbs$ in lumbar flexion, $122.2{\pm}43.6ft-lbs$ in lumbar extension, and $101.0{\pm}37.0ft-lbs$ in lumbar lateral flexion. In patient female group mean isometric maximum torques was $41.9{\pm}9.2ft-lbs$ in lumbar rotation, $49.9{\pm}23.9ft-lbs$ in lumbar flexion, $90.1{\pm}26.8ft-lbs$ in lumbar extension, and $62.0{\pm}16.7ft-lbs$ in lumbar lateral flexion. In patient male group mean maximum velocity of isoinertial exercise with low (25%) resistance was $102.4{\pm}28.8deg/sec$ in lumbar rotation, $108.9{\pm}32.2deg/sec$ in lumbar flexion/extension, and $103.5{\pm}30.4deg/sec$ in lumbar lateral flexion. In patient female group mean maximum velocity of isoinertial exercise with low (25%) resistance was $84.1{\pm}24.4deg/sec$ in lumbar rotation, $93.2{\pm}32.9deg/sec$ in lumbar flexion/extension, and $98.5{\pm}33.7deg/sec$ in lumbar lateral flexion. In patient male group mean maximum velocity of isoinertial exercise with high (50%) resistance was $74.0{\pm}20.9deg/sec$ in lumbar rotation, $98.7{\pm}32.8deg/sec$ in lumbar flexion/extension, and $85.0{\pm}25.8deg/sec$ in lumbar lateral flexion. In patient female group mean maximum velocity of isoinertial exercise with high (50%) resistance was $67.3{\pm}26.4deg/sec$ in lumbar rotation, $82.5{\pm}31.0deg/sec$ in lumbar flexion/extension, and $79.7{\pm}23.9deg/sec$ in lumbar lateral flexion. Conclusion : Maximum isoinertial velocities were more reliable and more significant than isometric maximum torque for the objective assessment of chronic low hack pain.

  • PDF

Behaviour Characteristics of Single Batter Pile under Dynamic Lateral Loads (동적 수평하중에 의한 단일 경사말뚝의 거동특성)

  • Kim, Jiseong;Noh, Jeongseob;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.49-60
    • /
    • 2017
  • The purpose of this study is to investigate the behavior of a single batter pile with repeated lateral loading through model tests. Repeated loads were applied in one direction and two directions, and lateral resistance and bending moment were analyzed by varying the relative density of the ground. As a result, lateral resistance and maximum bending moment were increased in the order of Out batter, Plumb, and In batter when one-way and two-way dynamic lateral loads were applied. The depth at the maximum bending moment was more deeper with the loading. The moments at bottom layer were decreased in the order of Out batter, Plumb, and In batter but upper moments were increased with the same order. Also, various bottom and upper moments were small when the two-way dynamic lateral load was applied compared to one-way lateral load.

Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater I : Complex Blocks with Group Piles (블록식 방파제의 수평저항력 평가를 위한 실내모형실험 I : 무리말뚝으로 보강된 복합 블록의 거동)

  • Kang, Gichun;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.95-103
    • /
    • 2021
  • While the existing pile foundation had the role of supporting the superstructure or reducing the earth pressure, recently there are cases where it is integrated with the superstructure to increase the lateral resistance. This study aims to evaluate a lateral resistance of block-type breakwaters with group piles by modelling experiments. The lateral resistance and bending moments of the piles by penetrated depths for the piles were measured. As a result, it was found that the lateral resistance increased as the depth of embedment of the group piles. In particular, the lateral resistance was 1.52 times greater in the case where the pile embedded up to the riprap layer than the case where the pile was embedded into the block. For the bending moment, the rear piles ware larger than the front piles, and the outside piles were larger than the inside piles. The location of the maximum bending moment in the ground was shown at the interface between the riprap layer and the natural ground.

Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA (LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동)

  • LEE, Dong Woo;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

Experimental Study on the Characteristics of the Lateral Load Resistance of Perforated Steel Plates (유공강판의 횡력저항능력에 대한 실험적 연구)

  • Park, Jeong-Ah;Lee, Young-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, an experimental research was performed to find the characteristics of the lateral load resistance of perforated steel plates which could be developed to retrofit existing RC framed buildings. The Specimens are tested with variables such as aspect ratio of plate, the ratio of perforation area, and the ratio of perforated diameter to strip which is more than 0.6. The lateral load was applied with displacement control until to reach 3.5% drift ratio. Through the experimental results, it was shown that the maximum strength of all specimens were reached at around 0.5% drift ratio and maintained until 3.5% drift ratio. From results, the modified strength prediction formula was derived with the variable ratio of the perforated diameter to strip. To evaluate seismic retrofit performance of RC frames using perforated steel plate, a simple design process was presented.

Behavior of Lateral Resistance according to Embed Depth of Pile for the Wind Power Foundation Reinforced with Piles in the Rocky Layer (암반지반에서 말뚝으로 보강된 풍력발전 기초의 말뚝 근입깊이에 따른 수평저항력 거동)

  • Kang, Gichun;Kim, Dongju;Park, Jinuk;Euo, Hyunjun;Park, Hyejeong;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2022
  • This study conducted to obtain the lateral resistance of a wind power foundation reinforced with piles through an model experiment. In particular, the lateral resistance of the foundation was compared with the existing gravity-type wind power foundation by integrating the pile, the wind power generator foundation, and the rocky ground. In addition, changes in the lateral resistance and bending moment of the pile were analyzed by embeded depths of the pile. As a result, it was found that the lateral resistance increased with the depth of embedment of the piles. In particular, the pile's resistance increase ratio was 2.11 times greater in the case where the pile embedded up to the rock layer than the case where the pile was embedded into the riprap. It was found that the location of the maximum bending moment occurred at the interface between the wind turbine foundation and the riprap layer when the pile embeded to the rock layer. Through this, as the lateral resistance of the wind power foundation reinforced with piles is greater than that of the existing gravity-type wind power foundation, it is understood that it can be a more advantageous construction method in terms of safety.

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.