• Title/Summary/Keyword: maximum flow

Search Result 3,388, Processing Time 0.03 seconds

Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring (오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석)

  • 맹주성;양시영;서현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

Finite element analysis of the fluid-structure interaction in a compliant vessel (유연 혈관에서 유체-고체 상호작용에 대한 유한요소 해석)

  • Shim, Eun-Bo;Ko, Hyung-Jong;Kamm, Roger D.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.591-596
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. Two models are examined: a planar two-dimensional channel, and an axisymmetric tube. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and compared to existing experimental data. Computational results for an axisymmetric tube show that as cross-sectional area falls with a reduction in downstream pressure, flow rate increases and reaches a maximum when the speed index (mean velocity divided by wave speed) is near unity at the point of minimum cross-section area, indicative of wave speed flow limitation or "choking" (flow speed equals wave speed) in previous one-dimensional studies. For further reductions in downstream pressure, flow rate decreases. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is ${\le}$ 2 the area throat is located near the downstream end; as wall taper is increased to ${\ge}$ 3 the constriction moves to the upstream end of the tube. In the planar two-dimensional channel, area reduction and flow limitation are also observed when outlet pressure is decreased. In contrast to the axisymmetric case, however, the elastic wall in the two-dimensional channel forms a smooth concave surface with the area throat located near the mid-point of the elastic wall. Though flow rate reaches a maximum and then falls, the flow does not appear to be choked.

  • PDF

Analysis for the Flow and Wall Shear Stress with the Diameter Ratios of an Abdominal Aortic Aneurysm in a Pulsatile Flow (맥동 유동에서 복부 대동맥류의 직경비에 따른 유동 및 벽면전단응력 해석)

  • 모정하
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • The objective of the present study was to two-dimensionally investigate the characteristics of flow and wall shear stress under pulsatile flow in the aneurysm which is a local dilatation of the blood vessel for pulsatile flow. The numerical simulation using the commercial software were carried out for the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Womersley number, 15.47. It was shown that a recirculating flow at the bulge was developed and disappeared for one Period and the strength of vortex increased with the diameter ratio Especially. at time of 3.19s. the very weak recirculating flow was developed at the left upper sites of the aneurysm. The maximum values of the wall shear stress increased in Proportion to the diameter ratio. However. the Position of a maximum wall shear stress was the distal end of the aneurysm(z = 35mm) regardless of the diameter ratios.

Analytical Methods of Leakage Rate Estimation from a Containment tinder a LOCA (냉각수상실 사고시 격납용기로부터 누출되는 유체유량 추산을 위한 해석적 방법)

  • Moon-Hyun Chun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.121-129
    • /
    • 1981
  • Three most outstanding maximum flow rate formulas are identified from many existing models. Outlines of the three limiting mass flow rate models are given along with computational procedures to estimate approximate amount of fission products released from a containment to environment for a given characteristic hole size for containment-isolation failure and containment pressure and temperature under a loss of coolant accident. Sample calculations are performed using the critical ideal gas flow rate model and the Moody's graphs for the maximum two-phase flow rates, and the results are compared with the values obtained from the mass leakage rate formula of CONTEMPT-LT code for converging nozzle and sonic flow. It is shown that the critical ideal gas flow rate formula gives almost comparable results as one can obtain from the Moody's model. It is also found that a more conservative approach to estimate leakage rate from a containment under a LOCA is to use the maximum ideal gas flow rate equation rather than tile mass leakage rate formula of CONTEMPT-LT.

  • PDF

Development of Analysis Model and Improvement of Evaluation Method of LOS for Freeway Merging Areas (고속도로 합류부 분석모형 개발 및 서비스수준 평가 기법 개선 연구)

  • Lee, Seung-Jun;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.115-128
    • /
    • 2006
  • The analytic methodology of a merging area in KHCM(2004) supposes that congestion nay occur when traffic demand is more than capacity However, in many cases, congestion on merging area occurs when summation of traffic demand of main line and ramp is less than capacity, and in present methodology analysis of how main line and ramp flow effect on congestion occurrence is difficult. In this study, the model that is able to estimate traffic flow condition on merging area in accordance with the combination of main line and ramp demand flow is developed. Main characteristic of the model is estimation of maximum possible throughput rate and maximum throughput rate according to the combination of main line and ramp demand flow. Through the estimation of maximum possible throughput rate and maximum throughput rate. it was Possible to predict whether congestion would occur or not and how much maximum throughput rate and congestion would be on merging area. On one hand, in present LOS evaluation methodology on merging area, congestion state is determined as un-congested flow if demand flow is less than capacity. Therefore, to establish more reasonable In evaluation method, new criterion of LOS evaluation on merging area was searched based on the model of this study.

AERODYNAMIC ANALYSIS OF SUB-ORBITAL RE-ENTRY VEHICLE (저궤도 재진입 비행체의 공력해석)

  • Kim, C.W.;Lee, Y.G.;Lee, D.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • For Aerodynamic analysis of vehicle at altitude, 100km, the validity of governing equations based on continuum model, was reviewed. Also, as the preliminary study for the sub-orbital space plane development, a candidate geometry was suggested and computational fluid dynamic(CFD) analysis was performed for various angles of attack in subsonic and supersonic flow regimes to analyze the aerodynamic characteristics and performance. The inviscid flow analyses showed that the stall starts at angle of attack above $20^{\circ}$, the maximum drag is generated at angle of attack, $87^{\circ}$ and the maximum lift to drag ratio is about 8 in subsonic flow. In supersonic, the stall angle is about $40^{\circ}$ and the maximum drag is generated at angle of attack, $90^{\circ}$. Also, mach number distribution of re-entry vehicle was computed versus altitudes.

Experimental Study on the Aerodynamic Performance Characteristics of a Small-Size Axial Fan with the Different Depths of Bellmouth (벨마우스 깊이가 다른 소형축류홴의 공력특성에 대한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.73-78
    • /
    • 2013
  • A Small-size axial fan(SSAF) has widely been utilized to circulate a cooling air in a refrigerator, etc. Generally, the aerodynamic performance of SSAF is strongly dependent upon the depth between SSAF and bellmouth, and it includes axial, partially stalled, mostly stalled and radial flow regions according to the flow coefficient. In this study, four kinds of bellmouth depths were considered to analyze the aerodynamic performance of SSAF. As a bellmouth depth increases, a maximum flowrate decreases, but a maximum static pressure increases. Also, stall region includes an inflection point in all aerodynamic performance curves. Finally, a static pressure efficiency shows the maximum value of 37%.

Experimental Investigation on the Flow in Concentric Annuli with Both Rough Walls (내·외벽에 거칠기가 있는 이중동심관 유동에 대한 실험적 연구)

  • Ahn, S.W.;Jung, Y.B.;Kim, K.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1995
  • Fully developed turbulent flow through three concentric annuli with both the rough inner and outer walls was experimentally investigated for a Reynolds number range Re=15,000-85,000. Measurements were made of the pressure drop, the positions of zero shear stress and maximum velocity, and the velocity distributions in annuli of radius ratios, ${\alpha}=0.26$, 0.4 and 0.56, respectively. The experimental results showed that the positions of zero shear streess and maximum velocity were only weakly dependent on the Reynolds number. It was also found that the position of zero shear stress was not coincident with that of maximum velocity. Furthmore, the former was influenced more sensitively than the latter on the square-ribbed roughness along the axial direction.

  • PDF

A Method for Determining All the k Most Vital Arcs in the Maximum Flow Problem by Ranking of Cardinality Cuts (절단기수의 나열을 통한 최대유통문제에서 모든 k-치명호를 찾는 방법)

  • Ahn, Jae-Geun;Chung, Ho-Yeon;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • The k most vital arcs (k-MVA) of a maximum flow problem is defined as those k arcs whose simultaneous removal from the network causes the greatest decrease in the throughput capability of the remaining system between a specified pair of nodes. In this study, we present a method for determining all the k-MVA in maximum flow problem using a minimal cardinality cut algorithm and k-th minimal cut ranking algorithm. For ranking cardinality cuts, we use Hamacher's ranking algorithm for cut capacity and by comparing present residual capacity of cardinality cut with expected residual capacity of next cardinality cut, we also present termination condition for this algorithm. While the previous methods cannot find all the alternatives for this problem, a method presented here has advantage of determining all the k-MVA.

  • PDF