• 제목/요약/키워드: maximum flood

검색결과 421건 처리시간 0.028초

Modeling Downstream Flood Damage Prediction Followed by Dam-Break of Small Agricultural Reservoir (농업용 소규모 저수지의 붕괴에 따른 하류부 피해예측 모델링)

  • Park, Jong-Yoon;Joh, Hyung-Kyung;Jung, In-Kyun;Jung, Kwan-Soo;Lee, Joo-Heon;Kang, Bu-Sik;Yoon, Chang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제52권6호
    • /
    • pp.63-73
    • /
    • 2010
  • This study is to develop a downstream flood damage prediction model for efficient confrontation in case of extreme and flash flood by future probable small agricultural dam break situation. For a Changri reservoir (0.419 million $m^3$) located in Yongin city of Gyeonggi province, a dam break scenario was prepared. With the probable maximum flood (PMF) condition calculated from the probable maximum precipitation (PMP), the flood condition by dam break was generated by using the HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) model. The flood propagation to the 1.12 km section of Hwagok downstream was simulated using HEC-RAS (Hydrologic Engineering Center - River Analysis System) model. The flood damaged areas were generated by overtopping from the levees and the boundaries were extracted for flood damage prediction, and the degree of flood damage was evaluated using IDEM (Inundation Damage Estimation Method) by modifying MD-FDA (Multi-Dimensional Flood Damage Analysis) and regression analysis simple method. The result of flood analysis by dam-break was predicted to occurred flood depth of 0.4m in interior floodplain by overtopping under PMF scenario, and maximum flood depth was predicted up to 1.1 m. Moreover, for the downstream of the Changri reservoir, the total amount of the maximum flood damage by dam-break was calculated nearly 1.2 billion won by IDEM.

Analysis of the Applicability of Flood Risk Indices According to Flood Damage Types (홍수피해유형별 홍수 위험 지수 적용성 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제38권1호
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, the applicabilities of flood risk indices using FVI from IPCC, PSR method from OECD, and DPSIR method from EEA, were analyzed. Normalized values of daily maximum rainfall, hourly maximum rainfall, ten minute maximum rainfall, annual precipitation, total days of heavy rainfall (more than 80mm/day), density of population, density of asset, DEM, road statistics, river maintenance ratio, reservoir capacity, supply ratio of water supply and sewerage, and pumping capacity were constructed from 2000 to 2015 for nationwide 113 watersheds, to estimate flood risk indices. The estimated indices were compared to 4 different types of flood damage such as the number of casualties, damage area, the amount of flood damage, and flood frequency. The relationships between flood indices and different flood damage types demonstrated that the flood index using the PSR method shows better results for the amount of flood damage, the number of casualties and damage area, and the flood index using the DPSIR method shows better results for flood frequency.

A Study on the Improvement of Probability Maximum Precipitation and Probability Maximum Flood Estimation (가능최대강수량 및 홍수량 산정에 대한 개선방안 연구)

  • Chun, Si-Young;Moon, Young-Il;Ahn, Jae-Hyun;Kim, Jong-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1762-1766
    • /
    • 2006
  • In order to protect properties and human lives from disasters such as heavy rainfall, rational Probability Maximum Flood(PMF) estimation procedures for existing dam basins are recently required. This study analyzes the Probable Maximum Flood(PMF) as a part of a counterplan for disaster preventions of hydraulic structures such as dams, according to recent unfavorable weather conditions. In this study, an improvement method of parameter estimation was proposed, being estimated as an appropriate method for application to the unit hydrograph, the time of concentration and storage constant corresponding to the discharge of flood were considered differently when estimating PMF in Hoengseong dam basin.

  • PDF

The Analysis for Flood Damage on Nam-sa Down Stream Region (남사천 하류지역 홍수피해 분석)

  • 김가현;이영대;서진호;민일규
    • Journal of Environmental Science International
    • /
    • 제10권3호
    • /
    • pp.217-223
    • /
    • 2001
  • Where no records are available at a site, a preliminary estimate may be made from relations between floods and catchment chatacteristics. A number of these chatacteristics were chosen for testing and were measured for those catchments where mean annual flood estimates were available. Although the improvement using extended data in regression of flood estimates on catchment characteristics was small, this may be due to the limitations of the regression model. When an individual short term record is to be extended, more detailed attention can be given; an example is presented of the technique which should be adopted in practice, particularly when a short term record covers a period which is known to be biassed. A method of extending the peaks over a threshold series is presented with a numerical example. The extension of records directly from rainfall by means of a conceptual model is discussed, although the application of such methods is likely to be limited by lack of recording raingauge information. Methods of combining information from various sources are discussed in terms of information from catchment characteristics supplemented by records. but are generally applicable to different sources of information. The application of this technique to estimating the probable maximum flood requires more conservative assumptions about the antecedent condition, storm profile and unit hydrograph. It is suggested that the profile and catchment wetness index at the start of the design duration should be based on the assumption that the estimated maximum rainfall occurs in all durations centered on the storm peak.

  • PDF

Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System (웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발)

  • Jung, In Kyun;Park, Jong Yoon;Kim, Seong Joon;Jang, Cheol Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제56권6호
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario (SSP 기후변화 시나리오에 따른 농업용 저수지 홍수조절능력 분석)

  • Kim, Jihye;Kwak, Jihye;Hwang, Soonho;Jun, Sang Min;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제63권5호
    • /
    • pp.49-62
    • /
    • 2021
  • The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfall-runoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973~2020) was a maximum of 445.2 mm and increased to 619.1~1,359.7 mm in the future (2011~2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.

Regional Frequency Analysis for a Development of Regionalized Regression Model of River Floods (하천홍수량의 지역화 회귀모형개발을 위한 지역빈도해석)

  • Noh, Jae Sik;Lee, Kil Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제13권3호
    • /
    • pp.139-154
    • /
    • 1993
  • The major purpose of this study is to develop a regionalized regression model, which predicts flood peaks from the characteristics of the ungaged catchments, through the regional flood frequency analysis for the selected stage gauging stations located on several natural rivers of Korea. The magnitude and the frequency of flood peaks with specified recurrence intervals were estimated from the flood frequency analysis on the 28 selected stage gauging stations distributed on the five major rivers of Korea. The results of the analysis were compared with the predictions from the two different flood frequency models. From the statistical evaluation of these models, it was revealed that the POT model (Peaks Over a Threshold model), which is based on the partial duration method, is more effective in predicting flood peaks from short period records than the ANNMAX model (ANNual MAXimum model) which is based on the annual maximum series method. A regionalized regression model was developed to facilitate the estimation of design floods for ungaged catchments through the regression analysis between flood peaks and the topographic characteristics of the catchments assumed to be important in runoff processes. In addition to this, the correlation diagrams are presented which show the relationships between flood peaks with specified recurrence intervals and the major characteristics of the catchments.

  • PDF

Flood damage cost projection in Korea using 26 GCM outputs (26 GCM 결과를 이용한 미래 홍수피해액 예측)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • 제51권spc1호
    • /
    • pp.1149-1159
    • /
    • 2018
  • This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • 제48권3호
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

Flood Risk Assessment with Climate Change (기후 변화를 고려한 홍수 위험도 평가)

  • Jeong, Dae-Il;Stedinger, Jery R.;Sung, Jang-Hyun;Kim, Young-Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권1B호
    • /
    • pp.55-64
    • /
    • 2008
  • The evidence of changes in the climate system is obvious in the world. Nevertheless, at the current techniques for flood frequency analysis, the flood distribution can not reflect climate change or long-term climate cycles. Using a linear regression and a Mann-Kendall test, trends in annual maximum precipitation and flood data for several major gauging sites were evaluated. Moreover, this research considered incorporating flood trends by climate change effects in flood frequency analyses. For five rainfall gauging sites (Seoul, Incheon, Ulleungdo, Jeonju, and Gangneung), upward trends were observed in all gauged annual maximum precipitation records but they were not statistically significant. For three streamflow gauging sites (Andong Dam, Soyanggang Dam, and Daecheong Dam), upward trends were also observed in all gauged annual maximum flood records, but only the flood at Andong Dam was statistically significant. A log-normal trend model was introduced to reflect the observed linear trends in annual maximum flood series and applied to estimate flood frequency and risk for Andong Dam and Soyanggang Dam. As results, when the target year was 2005, 50-year floods of the log-normal trend model were 41% and 21% larger then those of a log-normal model for Andong Dam and Soyanggang Dam, respectively. Moreover, the estimated floods of the log-normal trend model increases as the target year increases.