• Title/Summary/Keyword: maximum element order

Search Result 436, Processing Time 0.023 seconds

Safety Evaluation of 40m Combined Modular Bridge Super-Structures Based on Transportation Lifting Methods (40m 조합모듈교량 상부구조 이송에 따른 안전성 검토)

  • Park, Sung-Min;Jung, Woo-Young
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • The purpose of this study was the analytical safety evaluation on the super-structure of precast modular bridge using standardized modular members and robotic construction during the transportation routing and lifting conditions. In order to evaluate the safety performance of the bridge system, 3-D full scale Finite Element (FE) of 40 m standardized modular block was developed in ABAQUS, followed by the analytical study to classify the structural system according to steel girder structures: 1) modular bridge block lifting method including the steel girder system; 2) modular bridge block lifting method without the steel girder system. The results from the analytical study revealed that the maximum stress of each modular member was within the maximum allowable stresses during lifting condition. However, the stress concentration at the connected area was more critical in comparison to the behavior of 40 m combined modular blocks during lifting time

Characterization of Fracture Behavior in Repaired Skin/Stiffener Structure with an Inclined Central Crack

  • Chung, Ki-Hyun;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.599-608
    • /
    • 2002
  • Finite element analysis for the stress intensity factor (SIF) at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels is developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior at the inclined crack. In order to investigate the crack growth direction, maximum tangential stress (MTS) criterion are used. Also, this paper is to study the performance of the effective bonded composite patch repair of a plate containing an inclined central through-crack. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stress intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. We report the results of finite element analysis on the stiffener locations and crack slant angles and discuss them in this paper. The research on cracked structure subjected to mixed mode loading is accomplished and concludes that more work using a different approaches is necessary. The authors hope the present study will aid those who are responsible for the repair of damaged aircraft structures and also provide general repair guidelines.

Shape Optimization of an Air Conditioner Piping System (에어컨 배관 시스템의 형상 최적설계)

  • Min, Jun-Hong;Choi, Dong-Hoon;Jung, Du-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1151-1157
    • /
    • 2009
  • Ensuring both product quality and reducing material cost are important issue for the design of the piping system of an air conditioner outdoor unit. This paper describes a shape optimization that achieves mass reduction of an air conditioner piping system while satisfying two design constraints on resonance avoidance and the maximum stress in the pipes. In order to obtain optimized design results with various analysis fields considered simultaneously, an automated multidisciplinary analysis system was constructed using PIAnO v.2.4, a commercial process integration and design optimization(PIDO) tool. As the first step of the automated analysis system, a finite element model is automatically generated corresponding to the specified shape of the pipes using a morphing technique included in HyperMesh. Then, the performance indices representing various design requirements (e.g. natural frequency, maximum stress and pipe mass) are obtained from the finite element analyses using appropriate computer-aided engineering(CAE) tools. A sequential approximate optimization(SAO) method was employed to effectively obtain the optimum design. As a result, the pipe mass was reduced by 18 % compared with that of an initial design while all the constraints were satisfied.

An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete (Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF

A Study on the Fatigue Damage of a Railway Disc Brake Surface Due to Thermal Stress During Braking Using FEM Analysis (FEM을 이용한 철도차량용 제동 디스크의 제동시 답면에서의 열응력에 의한 피로손상에 관한 연구)

  • Joo, Se-Min;Kwon, Yong-Sang;Kim, Ho-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.212-218
    • /
    • 2009
  • In order to investigate the thermal cracking of the rolling stock brake disc, finite element analysis was conducted on the temperature distribution and thermal stress of the disc during braking. In case of initial vehicle speed of 90, 106, 120km/h, the maximum temperature on the disk surface due to braking was $135.9^{\circ}C,\;157.9^{\circ}C,\;178.7^{\circ}C$, respectively. And, the maximum von-Mises stress at the disc surface was 42.4, 50.3, 57.1MPa at a speed of 90, 105, 120km/h, respectively, indicating that the stress increases with an increment in the speed. Damage fraction due to braking during one year running on the Seoul - Busan line was determined as 14.6%.

The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole (원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han, Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State (응력한계상태를 이용한 해상풍력발전기 재킷구조물의 지진신뢰성해석)

  • Lee, Gee-Nam;Kim, Dong-Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.260-267
    • /
    • 2016
  • Considering the effect of dynamic response amplification, a reliability analysis of an offshore wind turbine support structure under an earthquake is presented. A reliability analysis based on the dynamic response requires a large amount of time when using not only a level 3 approach but also level 2 such as a first order reliability method (FORM). Moreover, if a limit state is defined by using the maximum stress at a structural joint where stress concentration occurs, a three-dimensional element should be used in the finite element analysis. This makes the computational load much heavier. To deal with this kind of problem, two techniques are suggested in this paper. One is the application of a quasi-static structural analysis that takes the dynamic amplification effect into account. The other is the use of a stress concentration factor to estimate the maximum local stress. The proposed reliability analysis is performed using a level 2 FORM and verified using a level 3 simulation approach.

Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method (유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구)

  • Son, In-Soo;Kang, Sung-Jung;Jeon, Bun-Sik;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

A Study on the Structural Stability of the Swash Plate Piston Pump for Marine Hydraulic Power Supply (선박 유압공급 장치용 사판식 유압 피스톤 펌프의 구조적 안정성에 관한 연구)

  • Gwak, Beom-Seop;Lim, Jong-Hak;Lee, In-Wook;Yi, Chung-Seob;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.24-30
    • /
    • 2021
  • In this paper, a structural stability analysis of the swash plate hydraulic piston pump installed on hydraulic supply systems in marine vessels is presented. In order to verify the integrity of the pump design, a standard structural analysis technique based on the finite element method has been applied for various operating and boundary conditions. For the maximum operational torque (223 N·m) at 5°, 10°, and 15° of the swash plate angle, the maximum deformation, equivalent stress and safety factor are evaluated. The analytical results show that under current operating conditions, the structural reliability of the design has been confirmed.

Investigation the effect of dynamic loading on the deformation of ancient man-made underground spaces

  • Rezaee, Hooman;Noorian-Bidgoli, Majid
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.277-287
    • /
    • 2022
  • The ancient underground cities are a collection of self-supporting spaces that have been manually excavated in the soil or rock in the past. Because these structures have a very high cultural value due to their age, the study of their stability under the influence of natural hazards, such as earthquakes, is very important. In this research, while introducing the underground city of Ouyi Nushabad located in the center of Iran as one of the largest man-made underground cities of the old world, the analysis of dynamic stability is performed. For this purpose, the dynamic stress-displacement analysis has been performed through numerical modeling using the finite element software PLAXIS. At this stage, by simulating the Khorgo earthquake as one of the large-scale earthquakes that occurred in Iran, with a magnitude of 6.9 on the Richter scale, dynamic analysis by time history method has been performed on three selected sections of underground spaces. This study shows that the maximum amount of horizontal and vertical dynamic displacement is 12.9 cm and 17.7 cm, respectively, which was obtained in section 2. The comparison of the results shows that by increasing the cross-sectional area of the excavation, especially the distance between the roof and the floor, in addition to increasing the amount of horizontal and vertical dynamic displacement, the obtained maximum acceleration is intensified compared to the mapping acceleration applied to the model floor. Therefore, preventive actions should be taken to stabilize the excavations in order to prevent damage caused by a possible earthquake.