• Title/Summary/Keyword: maximum drawing ratio

Search Result 40, Processing Time 0.023 seconds

A Study on the Warm Deep Drawing Ability of Sheets on Cr-Coating Die (크롬코팅 처리된 금형에서 박판의 온간 딥드로잉 성형성에 관한 연구)

  • 서대교;이재동;최치수;최이천;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.186-192
    • /
    • 2000
  • Some deep drawing characteristics to the elevated temperatures were investigated for the SCPI steel sheets by using the Cr-coated die. For this investigations, six steps of temperature ranges, from room temperature to 25$0^{\circ}C$, and six kinds of drawing ratio, from 2.4 to 2.9 were adopted. As a result, the limiting drawing ratio, maximum drawing force, and the maximum drawing depth were sensitively affected by the elevated temperatures, and the more stable thickness strain distribution was observed to the elevated temperatures. Some experimental results were compared with analytical results using the DYNA-3D code.

  • PDF

A Study on the Warm Deep Drawability of Sheets in Cr-Coated Die

  • Seo, Dae-Gyo;Lee, Jae-Dong;Heo, Young-Moo;Chang, Sung-Ho;Park, Yi-Chun;Kim, Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.839-846
    • /
    • 2001
  • Some deep drawing characteristics at elevated temperatures were investigated for the SCPI steel sheets by using a Cr-coated die. For this investigation, six different temperatures between room temperature and 250$\^{C}$, and six different drawing ratios ranging from 2.4 to 2.9 were considered. As a result, the limiting drawing ratio, the maximum drawing force and the maximum drawing depth were found to be affected sensitively by temperature, and more stable through-thickness strain distribution was observed at elevated temperatures. Some experimental results compared favorably with theoretical results obtained by using the finite element method.

  • PDF

Characteristics on the Warm Deep Drawability of Transformation-Induced Plasticity Steel Sheet (가공유기변태 강판의 온간 디프드로잉 성형 특성)

  • Kong K. H.;Choi C. S.;Choi Y. C.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.162-167
    • /
    • 2000
  • The warm deep drawability in square cup drawing is investigated about a newly developed high-strength steel sheet with retained austenite which is transformed into martensite during forming. For this investigation, six steps of temperature ranges, from room temperature to $250^{\circ}C$, and five kinds of drawing ratio, from 2.2 to 2.6 were adopted. As a result the maximum drawing force and the maximum drawing depth were affected by the elevated temperatures, and the more stable thickness strain distribution was observed to the elevated temperatures. But blue shortness happened over $200^{\circ}C$. The FEM analysis using the LS-DYNA code is adopted to compare the experimental results with the analytical results for thickness strain distribution.

  • PDF

A Study on the Warm Deep Drawing Ability of Sheets on Cr-Coating Die (크롬 코팅 처리된 금형에서 박판의 온간 딥드로잉 성형성에 관한 연구)

  • 공경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.63-70
    • /
    • 1999
  • Some deep drawing characteristics to the elevated temperatures were investigated for the SCP1 steel sheets by using the Cr-coated die. For this investigations six steps of temperature ranges from room temperature to 25$0^{\circ}C$ and six kinds of drawing ratio from 2.4 to 2.9 were adopted. As a result the limiting drawing ration maximum drawing force and the maximum drawing depth were sensitively affected by the elevated temperatures and the more stable thickness strain distribution was observed to the elevated temperatures, Some experimental results were compared with analytical results using the DYNA-3D code.

  • PDF

A Study on the Warm Beep Drawabilities of Galvannealed Steel Sheet (합금화 용융 아연 도금강판의 온간 디프드로잉 성형성에 관한 연구)

  • Chang S. H.;Choi C. S.;Choi Y. C.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.168-173
    • /
    • 2000
  • The limiting drawing ratio (LDR) under uniform heating of blanks was measured at the various temperature ranges between 25 and $250^{\circ}C$ by using two different blank shapes, square and circular blanks, and six different blank sizes with the drawing ratios(DR) of 2.4 to 2.9. The galvannealed steel sheet (SCP3CM 60/60) of 0.7mm thickness was used. The LDR at warm forming condition reached 1.2 times of that at room temperature, and the maximum drawing depth reached 1.9 times. The higher temperature was adopted, the more stable and uniform thickness strain distribution was observed.

  • PDF

A Study on the Warm Deep Drawabilities of Galvannealed Steel Sheet (합금화 용융 아연 도금강판의 온간 딥드로잉 성형성에 관한 연구)

  • 장성호;서대교
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.423-429
    • /
    • 2002
  • The limiting drawing ratio (LDR) under uniform heating of blanks was measured at the various temperature ranges between 25 and 25$0^{\circ}C$ by using two different blank shapes, square and circular blanks, and six different blank sizes with the drawing ratios(DR) of 2.4 to 2.9. The galvannealed steel sheet (SCP3CM 60/60) of 0.7mm thickness were used. The LDR at warm forming condition reached 1.2 times of that at room temperature, and the maximum drawing depth reached 1.9 times. The higher temperature was adopted, the more stable and uniform thickness strain distribution was observed. Some cases of the experimental results were compared with the analitical results using the commercial finite element method (FEM) code.

Characteristics of the Warm Deep Drawability of a Transformation-Induced Plasticity Steel Sheet

  • 서대교;장성호;공경환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.221-221
    • /
    • 1999
  • Warm deep drawability in a square cup drawing was investigated using a newly developed high-strength steel sheet with retained austenite that was transformed into martensite during formation. For this investigation, six different temperatures between room temperature and 250℃, and five different drawing ratios ranging from 2.2 to 2.6 were considered. The results showed that the maximum drawing force and the drawing depth were affected by the change in temperature, and a more stable thickness strain distribution was observed at elevated temperatures. However, blue shortness occurred at over 200℃. FEM analysis using the LS-DYNA code was used to compare the experimental results with the numerical results for the thickness strain distribution.

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

The Effect of Coagulant on the Post Drawing and Morphology of Wet Spun Regenerated SF/Nylon 6 Blend Filaments

  • Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper, the regenerated silk fibroin (SF)/nylon 6 blend filaments were fabricated using wet spinning technique and the effect of coagulant on the post drawing and morphology of blend filaments was investigated. In the result of wet spinnability, methanol, acetone, DMF, and THF showed relatively good coagulation strength and fiber formation for the regenerated SF. On the contrary, they did not exhibit strong enough to produce a uniform nylon 6 filament due to the lack of coagulation strength. In the examination of post drawing performance, methanol showed the highest maximum draw ratio of the blend filament over all blend ratios. The maximum draw ratio of SF/nylon 6 blend filaments decreased with the reduction of SF content regardless of type of coagulant. SEM observation showed the consistent result with that of post-drawing performance. As SF content decreased, the uniform and regular structure was changed to irregular one. In particular, the severe macro-phase separation between SF and nylon 6 could be detected in the 50/50 SF/nylon 6 blend filaments coagulated in methanol and THF.

Finite Element Analysis and Experimental Investigation of Non-isothermal Foming Processes for Aluminum-Alloy Sheet Metals(Part 1. Experiment) (알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구 (제1부. 실험))

  • 류호연;김영은;김종호;구본영;금영탁
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.152-159
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5020-H32 for improving deep drawability. Experiments for producing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shapes. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5020-H32 sheet, whereas LDR of 2.25 in case of A1050-H16, could be obtained and the former was 1.4 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5020-H32 material was also about 1.92 times deeper than the depth drawn at room temperature. The effects of blank shape and forming temperature on drawability as well as thickness distribution of drawn cups were examined and discussed.

  • PDF