• 제목/요약/키워드: maximum concentrations of air pollutants

검색결과 38건 처리시간 0.027초

황사현상에 의한 대기오염물질의 농도분포 특성에 관한 연구 (A Study on the Concentration Distribution Characteristics of Air Pollutants by Yellow Sand Phenomenon)

  • 이용기;김종찬;최승석;임홍빈;최양희;이수문
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.71-78
    • /
    • 2002
  • This study was conducted to evaluate the concentration distribution characteristics of air pollutants by the yellow sand from China. The concentrations and chemical properties of FPM contained in the yellow sand were compared with those of air pollutants when having no yellow sand in order to estimate the variation characteristics and the originated source of air pollutants moved by yellow sand. The concentrations of PM-2.5 and PM-10 contained in the yellow sand showed an increase of 2.3 to 2.7 times than usual, and the concentrations of NO2 and SO2 in the gaseous pollutants showed an increase of about 1.6 times by yellow sand, and thus the air contamination was much influenced by yellow sand phenomenon. The concentrations of inorganic elements contained in FPM from the yellow sand showed a higher concentration variation in the order of Al>Mg>Zn>Pb than usual. The concentration coefficient of air aerosol during the yellow sand period showed that Na, K, Ca, Mg and Fe were originated from natural source, and Pb, Cr, Cd, Cu and Zn were originated from artificial source for inorganic elements. The correlation analysis between FPM and inorganic elements showed in the descending order of Al>K>Pb>Mg, and thus the deposited amount of Pb was influenced by that of yellow sand. The average concentrations of PM-10 measured during the yellow sand period exceeded the Korea Air Environmental Standard and showed a excess rate of 3.4 times in the maximum but the average concentrations of PM-2.5 showed within the United States Air Environmental Standard.

현업운영 가능한 서울지역의 일 최고 대기오염도 예보모델 개발 연구 (A Study on the Development of Operable Models Predicting Tomorrow′s Maximum Hourly Concentrations of Air Pollutants in Seoul)

  • 김용준
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.79-89
    • /
    • 1997
  • In order to reduce the outbreaks of short-term high concentrations and its impacts, we developed the models which predicted tomorrow's maximum hourly concentrations of $O_3$, TSP, SO$_2$, NO$_2$ and CO. Statistical methods like multi regressions were used because it must be operated easily under the present conditions. 47 independent variables were used, which included observed concentrations of air pollutants, observed and forcasted meteorological data in 1994 at Seoul and its surrounding areas. We subdivided Seoul into 4 areas coinciding with the present ozone warning areas. 4 kinds of seasonal models were developed due to the seasonal variations of observed concentrations, and 2 kinds of data models for the unavailable case of forecasted meteorological data. By comparing the $R^2$and root mean square error(hearafter 'RMSE') of each model, we confirmed that the models including forecasted data showed higher accuracy than ones using observed only. It was also shown that the higher the seasonal mean concentrations, the larger the RMSE. There was no distinct difference between the results of 4 areal models. In case of test run using 1995's data, the models predicted well the trends of daily variation of concentrations and the days when the possibility of outbreak of high concentarion was high. This study showed that it was reasonable to use those models as operational ones, because the $R^2$ and RMSE of models were smaller than those of operational/research models such as in South Coast Air Basin, CA, USA.

  • PDF

서울시 대기 중 $H_2O_2$의 농도 (Hydrogen Peroxide Concentrations in Air in Seoul)

  • 강충민;김희강
    • 한국대기환경학회지
    • /
    • 제16권1호
    • /
    • pp.61-68
    • /
    • 2000
  • Gas-phase hydrogen peroxide(H2O2) concentrations were measured to investigate it's distribution in the ambient air in downtown Seoul(Kwanghwamum and Mullae-dong). These measurements were made during four season, from April 30, 1998 to January 29, 1999, using Cold Trap and HPLC. Measurements were also made of other photochemical oxidants and trace gases(O3, NO2, CO and SO2) and meteorological parameters(relative humidity, temperature, solar radiation and wind speed). The mean of all observations was 0.10 ppbv and the range measured was below the level of detection(>0.01 ppbv) to 0.47ppbv. The higher seasonal mean concentrations showed during the summer(0.21 ppbv) and concentrations of H2O2 showed a diurnal variation with maximum concentrations in the afternoon(12:30∼14:00). The results from the corrrelation analysis showed that the concentration of gaseous H2O2 is strongly dependent on the other air pollutants(NO2, CO and O3) and meteorological parameters(relative humidity, temperature and solar radiation.)

  • PDF

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권4호
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

동북아시아 대기오염물질의 이동 패턴에 따른 장거리 수송 특성 연구 (Characteristics of Long-Range Transport of Air Pollutants due to Different Transport Patterns over Northeast Asia)

  • 박신영;김연종;김철희
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.142-158
    • /
    • 2012
  • This paper investigates the physical and chemical characteristics of long-range transport (LRT) process of air pollutants by employing the MM5-CMAQ and its comparison with local emission dominant (LED) case over northeast Asia. We first classified high air pollution days into LRT and LED cases based on the synoptic meteorological variables of vorticity and geostrophic wind speed/direction at a geopotential level of over 850hPa. LRT cases are further categorized into three types of transport patterns (LRT-I-III) according to the air mass pathways from source regions. LRT-I-III are originated from northern, central, and southern China, respectively, identified by back trajectory analysis. Three LRT-I-III groups have different and unique locations of high pressure and transport pathways. The chemical characteristics showed that the simulated spatial distributions varied in terms of locations of maximum concentrations and the temporal variation of surface concentrations. The primary air pollutants such as $NO_x$, $PM_{10}$ and $SO_2$ of all of three LRT cases are well transported into Korea peninsula with different concentration levels. Of LRT cases, LRT-II has the greatest effect on air quality of Korea peninsula, followed by LRT-I and LRT-III. In comparison with LRT, the LED case shows relatively higher air pollution concentrations in general, but showed a variety of different air quality levels following the emission strength pattern. These widely varying patterns are impling the case dependent multi-directional approach for the development of indicators of long-range transport process over northeast Asia.

Human Health Risk Assessment Due to Air Pollution in the Megacity Mumbai in India

  • Maji, Kamal Jyoti;Dikshit, Anil Kumar;Chaudhary, Ramjee
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권2호
    • /
    • pp.61-70
    • /
    • 2017
  • This study evaluated the human health risk in terms of the excess number of mortality and morbidity in the megacity Mumbai, India due to air pollution. AirQ software was used to enumerate the various health impacts of critical pollutants in Mumbai in past 22 years during 1992-2013. A relationship concept based on concentration-response relative risk and population attributable-risk proportion was employed by adopting World Health Organization (WHO) guideline for concentrations of air pollutants like $PM_{10}$, $SO_2$ and $NO_2$. For the year 1992 in Mumbai, it was observed that excess number of cases of total mortality, cardiovascular mortality, respiratory mortality, hospital admission due to COPD, respiratory disease and cardiovascular disease were 8420, 4914, 889, 149, 10568 and 4081 respectively. However, after 22 years these figures increased to 15872, 9962, 1628, 580, 20527 and 7905 respectively, but all of these reached maximum in the year 2006. From the result, it is also noted that except COPD morbidity the excess number of cases from 1992-2002 to 2003-2013 increased almost by 30%; and the excess number of mortality and morbidity is basically due to particulate matter ($PM_{10}$) than due to gaseous pollutants.

고속도로 휴게소의 소형소각로에서 배출되는 대기오염물질 조사 (An Investigation for Air Pollutants Emitted from Small-Scale Incinerators in Highway Service Area)

  • 장영기;최상진;김관;홍민선;최종인;문수호;김순태;김승도
    • 한국대기환경학회지
    • /
    • 제18권6호
    • /
    • pp.539-546
    • /
    • 2002
  • The physicochemical properties of solid wastes generated from seven highway service areas, four branch offices, and one construction site were analyzed in concert with air pollutants including heavy metals emitted from near-by small-scale incinerators. The amount of solid wastes generated from highway areas has been increasing with recent increases in the number of highways and passengers. Twelve incinerators examined in this study generally had capacity smaller than 100 kg/hr, most of which were equipped with cyclone for dust removal. It was seen that the concentrations of the gas-phase air pollutants (e.g., SO$_2$, NO$_{x}$, HCl and H$_2$S) were above the acceptable emission standards except one or two sites. CO concentrations at all incinerators were also higher due to incomplete combustion. In addition, particulate matters showed concentration six times higher at their maximum. The results of heavy metal analysis showed that the concentrations of Cu, Cd, and Ni satisfied the emission standards. whereas Pb at one site and Zn at five sites exceeded the standards. Cr measurement results indicated that 9 of 12 incinerators had higher values than the standard; especially one branch office showed nine times higher than normal concentration. In order to satisfy more stringent emission standards in the near future, it is necessary to install air pollution control system and to develop an intensified management plan.n.

산업단지 내 저층과 고층 아파트의 외기 중 호흡성분진과 일산화탄소 수준 (Ambient Levels of CO and PM10 at Low- and High-floor Apartments in Industrial Complexes)

  • 조완근;이준엽
    • 한국환경과학회지
    • /
    • 제15권8호
    • /
    • pp.719-725
    • /
    • 2006
  • Since low-floor apartments ate vertically closer to patting lots and roadways, it is hypothesized that residents in low-floor apartments may be exposed to elevated ambient levels of motet vehicle emissions compared to residents in high-floor apartments. The present study examined this hypothesis by measuring two motor vehicle source-related pollutants(CO and PM10) in ambient air of high-rise apartment buildings within the boundary of industrial complexes according to atmospheric stability The ambient air concentrations of CO and PM10 were higher for low-floor apartments than for high-floor apartments, regardless of atmospheric stability, The median concentration ratio of the low-floor air to high-floor alt ranged from 1.3 to 2.0, depending upon atmospheric stabilities, seasons and compounds. Moreover, the CO and PM10 concentrations were significantly higher in the winter and in the summer, regardless of the Hoot height. Atmospheric stability also was suggested to be important for the residents' exposure of high-rise apartment buildings to both CO and PM10. The median ratios of surface inversion air to non-surface inversion air ranged from 1.2 to 1.7 and from 1.0 to 1.6 lot PM10 and CO, respectively, depending upon seasons. Conclusively, these parameters(apartment floor height, season, and atmospheric stability) should be considered when evaluating the exposure of residents, living in high-rise apartment buildings, to CO and PM10. Meanwhile, the median PMl0 outdoor concentrations were close to or higher than the Korean annual standards for PM10, and the maximum PM10 concentrations substantially exceeded the Korean PM10 standard, thus suggesting the need for a management strategy for ambient PM 10. Neither the median nor the maximum outdoor CO concentrations, however, were higher than the Korean CO standard.

광화학-궤적 모델에 의한 여름철 맑은 날 서울지방의 지상 오존 농도 추정 (Estimate of Surface Ozone Concentration on Sunny Summer Days in Seoul Area by the Photochemical-Trajectory Model)

  • 이시우;이광목
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.497-506
    • /
    • 2002
  • A Photochemical-Trajectory model was used to understand the production of ozone in the atmospheric boundary layer. This model was composed of the trajectory and the photochemical models. To calculate trajectories of air parcels, winds were obtained from the three-dimensional nonhydrostatic mesoscale model (PSU/NCAR MM5V2), and the results were interpolated into constant height surfaces. Numerical integration in the trajectory model was performed by the Runge-Kutta method. The photochemical model consisted of chemical reactions and photodissociation processes. Chemical equations were integrated by the semi-implicit Bulirsch-Stoer method. We performed our experiments from 21 July to 23 July 1994 during the summer time for Seoul area. During the time of maximum ozone concentration in Seoul, four trajectories of air parcels which traveled from Inchon to Seoul were selected. Ozone concentrations estimated by two models are compared with observed one in Seoul area and the photochemical-trajectory model is better fitted than pure photochemical model. During the selected period, high ozone concentrations in Seoul area were more influenced by transferred pollutants from Inchon than emitted pollutants in Seoul.

하층대기의 연직 안정도 지표를 이용한 차량 2부제의 수도권 대기오염도 저감효과 분석 (Evaluation of the Effect of Traffic Control Program on the Ambient Air Quality in Seoul Metropolitan Area Using the Lower Level Stability Index of Atmosphere)

  • 김철희;박일수;이석조;김정수;홍유덕;한진석;진형아
    • 한국대기환경학회지
    • /
    • 제21권2호
    • /
    • pp.243-257
    • /
    • 2005
  • The effects of Traffic Control Program (TCP) on the ambient urban air quality of SO$_{2}$, NO$_{2}$, O$_{3}$, and PM$_{10}$ were evaluated in Seoul metropolitan area by using the lower atmospheric vertical stability index and daily mean wind speeds. The vertical stability index; temperature lapse rate between 1000 hPa and 850 hPa geopotential height fields, were used to identify daily vertical stability index during the 2002 World Cup period where traffic amount was reportedly reduced to half the number of vehicles. The indicated air quality levels of TCP days were then compared with those of the cases observed with analogous vertical stability during the recent 3 years from 2000 to 2002. The result indicates that the effect of TCP on the primary air pollutants are found to be approximately 39$\%$, 23$\%$ and 20$\%$ lower for SO$_{2}$, NO$_{2}$ and PM$_{10}$, respectively. The secondary air pollutant; ozone, showed relatively smaller decreasing rate (13$\%$) of daily mean concentrations (even increased during the night time). The comparison of daily maximum or peak concentrations reveals that the pronounced decreasing effects of TCP on the ambient air quality for both primary and secondary air pollutants, suggesting that TCP is one of the effective strategies to control peak or higher concentrations for most urban scale air pollutants in and around the Seoul metropolitan area.