• Title/Summary/Keyword: maximum Von-Mises stress

Search Result 209, Processing Time 0.024 seconds

High temperature rupture lifetime of 304 stainless steel under multiaxial stress states (다축응력상태에서의 304 스테인리스강의 고온 파괴수명에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.595-602
    • /
    • 1998
  • Specimens of 304 stainless steel were tested to failure at elevated temperatures under multiaxial stress states, uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times are compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the principal facet stress gives the best correlation for the material investigated, and this parameter can predict creep life data under multiaxial stress states with rupture data obtained with specimens under uniaxial stresses. The results also suggest that grain boundary cavitation, coupled with localized deformation processes such as grain boudary sliding, controls the lifetimes of the specimens.

Assessment of a Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • Choi, Jong-Won;Cho, Dong-Keun;Lee, Yang;Choi, Heui-Joo;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.41-50
    • /
    • 2006
  • In this paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm-container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by $\sim20$ tons.

  • PDF

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF

A STRESS ANALYSIS OF THE IMPLANT - SUPPORTED OVERDENTURE USING STRAIN GAUGE (스트레인 게이지를 이용한 임플랜트 지지 오버덴춰의 응력분석)

  • Cho, Hye-Won;Kwon, Joo-Hong;Lee, Wha-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 1999
  • Stress distribution on mandibular implants supporting overdentures were registered in vitro experimental model by means of 4 rosette gauges which were placed around the implant. The overdenture attachments used in this study were the Resilient Dolder bar, Rigid Bolder bar, Round bar, Hader bar & Dal-Ro attachment. An occlusal jig was placed on the overdenture and the loading sites were 3 points which mimicked working, balancing, and median relations. With 5 and 10kg loading, strains were measured by strain indicator(P-3500, Measurement group, Raleigh, USA), and using these data, maximum and minimum principal stresses and Von Mises stress were calculated and evaluated. The results were as follows : There was a tendency of high stress concentration in the lingual side of the implant, and in the buccal side low stress was developed regardless of the attachment systems. The resilient Bolder bar concentrated highest stress among the attachment systems, and the Round bar and the Dal-Ro attachment provided comparatively low stresses around the implant. The rigid Bolder bar concentrated high stress in the mesial side, and the Dal-Ro attachment developed tensile stress patterns in the lingual and distal sides of the implant at the balancing relation.

  • PDF

Structural Response and Reliability of a Cylindrical Array Sensor due to Underwater Explosion (수중폭발에 의한 원통형 배열센서의 구조 응답 및 안정성 해석)

  • Jeon, Soo-Hong;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon;Cho, Yo-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper establishes a modeling and simulation procedure for structural response and reliability of a cylindrical array sensor on submarines under the shock generated by underwater explosion. The structural reliability of SONAR is important because the submarine could get out of combat ability by the structural damage of the SONAR upon explosion. A cylindrical array sensor was first modeled using the finite element method. Modal analysis was then performed for the check of the reliability of the modeling. The shock resistance simulations were performed for the responses to the structural shock waves and for the responses to the directly applied underwater shock waves, according to BV-043 and MIL-STD-901D, respectively. The stresses of the structure were evaluated with von-Mises scheme. Vulnerable regions were exposed through mapping the maximum stress to the structural model. Maximum stress of the SONAR was compared with the yield stress of the material to examine the structural reliability.

Durability Design of the Thickness of Bicycle Frames (자전거 프레임 두께에 따른 내구 설계)

  • Han, Sang Geun;Chun, Se Young;Kang, Seong Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.84-89
    • /
    • 2015
  • The thickness of a stable and economical frame has been designed in order to reduce costs. Therefore, this study applied structural analysis and vibration analysis based on a comparison of the thicknesses of frames. Four types of frames (1mm, 2mm, 3mm, and 5mm) were modeled on a bicycle frame that has a length of 842mm, a width of 100mm, and a height of 400.5mm, and all of these frames generated the stress and maximum deformation amount in the state and around the saddle. The maximum stress shown was 25.732 MPa in 1mm, 11.79 MPa in 2mm, and 8.2015 MPa in 3mm, and the maximum deformation amount shown was 0.063611mm in 1mm, 0.031978mm in 2mm, and 0.022319mm in 3mm. The natural frequency of the frame thicknesses 1mm, 2mm, and 3mm was estimated as within 270 Hz. The critical frequency of conditions of 3mm was the biggest at 118.1Hz compared with the 3-mm model; thus, 3mm was shown to have the most satisfactory resistance.

Effects of overdenture attachment systems with different working principles on stress transmission: A three-dimensional finite element study

  • Turker, Nurullah;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.351-360
    • /
    • 2020
  • PURPOSE. The aim of the present study was to compare the stress distributions on the dental implants, abutments, and bone caused by different overdenture attachment types under functional chewing forces. MATERIALS AND METHODS. The 3D finite element models of the mandible, dental implants, attachment types, and prostheses were prepared. In accordance with a conventional dental implant supported overdenture design, the dental implants were positioned at the bone level in the canine teeth region bilaterally. A total of eight models using eight different attachment systems were used in this study. All the models were loaded to simulate chewing forces generated during the centric relationship (450 N), lateral movement (400 N), protrusive movement (400 N), and also in the presence of a food mass unilaterally (200 N). Stress outputs were obtained as the maximum principal stress and the equivalent von-Mises stress. RESULTS. In all attachment types, higher stress values were observed in the abutments, dental implants, and bone in the magnet attachments in different loading conditions. The highest stress values were observed among the magnet systems in the components of the Titanmagnetics model in all loading conditions (stresses were 15.4, 17.7, and 33.1 MPa on abutment, dental implant, and bone, respectively). The lowest stress value was observed in the models of Zest and O-Ring attachments. CONCLUSION. The results of the present study implied that attachment types permitting rotation and tolerating various angles created lower stresses on the bone, dental implants, and abutments.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY (상악 중절치 근관치료후 수복 방법에 따른 응력 분포의 유한 요소 분석)

  • Lee, Jae-Young;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.549-567
    • /
    • 1994
  • Restoration of severly damaged teeth after endodontic treatment had been an interest to many dentists, and it is a fact that there have been lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the influence of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper incisor have severly damaged, so, after the root canal therapy, 4 types of restoration had been carried out; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with composite resin core only, 3) after setting up the Para-Post; restore with amalgam core, then cover with the PPM crown 4) after setting up the Para-Post, restore with composite core, then cover with the PPM crown. After restoration, in order to observe the concentration of stress at internal portion of the teeth and the sourrounding periodontal tissue, developing a 2-dimensional finite element model of labiopalatal section, then loading forces from 3 direction - direction of 45 degrees from lingual side near the incisal edge, horizontal direction from labial height of contour, vertical direction at the incisal edge-were applied. The analyzed results were as follows: 1. Stress of the normal central incisor was concentrated on the dentin aroundpulp chamber, labiocervical portion of a tooth and root apex, but with the alveolar bone, in the case of load from the direction of 45 degrees from lingual side near the incisal edge showed remarkable concentration of stress: 2. Coronal-radicular amalgam technique -showed less concentration of stress on the root and surrounding periodontal tissue than the restoration with the Para-Post. 3. The von Mises equivalent stress on the Para-Post showed maximum value at root-core junction rather than both ends and model with PPM restoration with amalgam core showed the least concentration of stress. Only the force from horizontal direction showed large shear stress on internal portion of the root, root apex and alveolar bone. 4. PPM crown with composite core rarely showed the concentration of stress on root and periodontal tissue. 5. As for alveolar bone, remarkable shear stress was concentrated on labial and palatal side by horizontal load.

  • PDF

THREE-DIMENTIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION FOR DIFFERENT IMPLANT THREAD SLOPE (임플랜트 나사선 경사각이 치조골 응력 분포에 미치는 영향)

  • Seo, Young-Hun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.482-491
    • /
    • 2007
  • Statement of problem: The screws of dental implant, having various thread types, can be categorized into different classes by their geometrical form, and each type transmits dissimilar amount and form of stress to alveolar bone. Purpose: The purpose of this study was to find an inclination angle of the screw thread that is favorable in distributing the stresses to alveolar bone. Material and methods: In this study, We used three dimensional finite element analysis with modeling having three types of thread inclination angles and fixed pitch-0.8 mm (single thread type with $3.8^{\circ}$ inclination, double thread type with $7.7^{\circ}$ inclination, triple thread type with $11.5^{\circ}$ inclination). Results: The results obtained from this study were as follows; 1. When the number of thread increased, the amount of Von-Mises stress was reduced since the generated stress was effectively distributed. 2. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants when comparing the magnitude of the maximum principal stress double thread had least amount of stress. This shows that the double thread screw gave best result. Conclusion: In conclusion, double, and triple thread screws were found to be more effective on distribution of the stress than the single thread screws. But, increasing in the thread inclination angle such as triple thread screw relate on the magnitude of the maximum principal stress affecting on the alveolar bone can become problematic. Thus, effective combination of thread number and thread inclination angle can help prolonging the longevity of implant.

A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kang, Myung-Su;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.