• Title/Summary/Keyword: maximal operator

Search Result 91, Processing Time 0.032 seconds

A NOTE ON A GENERAL MAXIMAL OPERATOR

  • Kim, Kyung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.155-162
    • /
    • 1995
  • Let $\mu$ be a positive Borel measure on $R^n$ which is positive on cubes. For any cube $Q \subset R^n$, a Borel measurable nonnegative function $\varphi_Q$, supported and positive a.e. with respect to $\mu$ in Q, is given. We consider a maximal function $$ M_{\mu}f(x) = sup \int \varphi Q$\mid$f$\mid$d_{\mu} $$ where the supremum is taken over all $\varphi Q$ such that $x \in Q$.

  • PDF

The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions

  • Shokri, Abbas Ali;Shokri, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.189-195
    • /
    • 2014
  • Let X be a compact metric space, B be a unital commutative Banach algebra and ${\alpha}{\in}(0,1]$. In this paper, we first define the vector-valued (B-valued) ${\alpha}$-Lipschitz operator algebra $Lip_{\alpha}$ (X, B) and then study its structure and characterize of its maximal ideal space.

MEASURE OF MAXIMAL ENTROPY FOR STAR MULTIMODAL MAPS

  • Attarzadeh, Fatemeh;Tajbakhsh, Khosro
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • Let f : [0, 1] → [0, 1] be a multimodal map with positive topological entropy. The dynamics of the renormalization operator for multimodal maps have been investigated by Daniel Smania. It is proved that the measure of maximal entropy for a specific category of Cr interval maps is unique.

ROUGH MAXIMAL SINGULAR INTEGRAL AND MAXIMAL OPERATORS SUPPORTED BY SUBVARIETIES

  • Zhang, Daiqing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.277-303
    • /
    • 2021
  • Under the rough kernels Ω belonging to the block spaces B0,qr (Sn-1) or the radial Grafakos-Stefanov kernels W����(Sn-1) for some r, �� > 1 and q ≤ 0, the boundedness and continuity were proved for two classes of rough maximal singular integrals and maximal operators associated to polynomial mappings on the Triebel-Lizorkin spaces and Besov spaces, complementing some recent boundedness and continuity results in [27, 28], in which the authors established the corresponding results under the conditions that the rough kernels belong to the function class L(log L)α(Sn-1) or the Grafakos-Stefanov class ����(Sn-1) for some α ∈ [0, 1] and �� ∈ (2, ∞).

NOTES ON BERGMAN PROJECTION TYPE OPERATOR RELATED WITH BESOV SPACE

  • CHOI, KI SEONG
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • Let Qf be the maximal derivative of f with respect to the Bergman metric $b_B$. In this paper, we will find conditions such that $(1-{\parallel}z{\parallel})^s(Qf)^p(z)$ is bounded on B. We will also find conditions such that Bergman projection type operator $P_r$ is bounded operator from $L^p(B,d{\mu}_r)$ to the holomorphic Besov p-space Bs $B^s_p(B)$ with weight s.

ITERATIVE ALGORITHMS WITH ERRORS FOR ZEROS OF ACCRETIVE OPERATORS IN BANACH SPACES

  • Jung, Jong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.369-389
    • /
    • 2006
  • The iterative algorithms with errors for solutions to accretive operator inclusions are investigated in Banach spaces, including a modification of Rockafellar's proximal point algorithm. Some applications are given in Hilbert spaces. Our results improve the corresponding results in [1, 15-17, 29, 35].

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.