• Title/Summary/Keyword: max-rate scheduling

Search Result 16, Processing Time 0.026 seconds

A Study On Message Scheduling Algorithm for Wide Area Differential GNSS Considering International Standard (국제표준을 고려한 광역보정시스템 메시지 스케쥴링 기법 연구)

  • Han, Deok-Hwa;Yoon, Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.517-522
    • /
    • 2011
  • Global Navagation Satellite System(GNSS) is divided into Local Area Differential GNSS and Wide Area Differential GNSS. Wide Area DGNSS has more complicated structure and massage type. And transfer rate is limited, so efficient message scheduling algorithm is needed to guarantee user's accuracy and integrity. There are about 30 message types in Wide Area DGNSS. Each message type has different update interval. In this paper, the performances of message scheduling algorithm for Wide Area Differential GNSS are investigated. For all message types, results show that max update time interval requirement is satisfied.

A Study on Packet Scheduling for LTE Multimedia Data (LTE 멀티미디어 데이터를 위한 패킷 스케쥴링 알고리즘에 관한 연구)

  • Le, Thanh Tuan;Yoo, Dae-Seung;Kim, Hyung-Joo;Jin, Gwang-Ja;Jang, Byung-Tae;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.613-619
    • /
    • 2012
  • The Long Term Evolution (LTE) system is already able to provide a background of variety services for mobile users with multimedia services such as audio, video, and data. In fact, the High Speed Packet Access plus (HSPA+) solution can greatly enhance bit rates on down-link. However, the supporting for multimedia applications with different QoS (Quality of Service) requirements is not devised yet. Hence, in this paper we propose an effective packet scheduling algorithm based on Proportional Fairness (PF) scheduling algorithms for the LTE. In this proposed packet scheduling scheme, we optimized instantaneous user data rates and the traffic class weight which prioritize user's packets. Finally, we evaluated and showed the performance of the proposed scheduling algorithm through simulations of multimedia traffics being transmitted to users over LTE links in a multi-cell environment.

High Speed 8-Parallel Fft/ifft Processor using Efficient Pipeline Architecture and Scheduling Scheme (효율적인 파이프라인 구조와 스케줄링 기법을 적용한 고속 8-병렬 FFT/IFFT 프로세서)

  • Kim, Eun-Ji;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.175-182
    • /
    • 2011
  • This paper presents a novel eight-parallel 128/256-point mixed-radix multi-path delay commutator (MRMDC) FFT/IFFT processor for orthogonal frequency-division multiplexing (OFDM) systems. The proposed FFT architecture can provide a high throughput rate and low hardware complexity by using an eight-parallel data-path scheme, a modified mixed-radix multi-path delay commutator structure and an efficient scheduling scheme of complex multiplications. The efficient scheduling scheme can reduce the number of complex multipliers at the second stage from 88 to 40. The proposed FFT/IFFT processor has been designed and implemented with the 90nm CMOS technology. The proposed eight-parallel FFT/IFFT processor can provide a throughput rate of up to 27.5Gsample/s at 430MHz.

Buffer Management Method for Multiple Projects in the CCPM-MPL Representation

  • Nguyen, Thi Ngoc Truc;Takei, Yoshinori;Goto, Hiroyuki;Takahashi, Hirotaka
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.397-405
    • /
    • 2012
  • This research proposes a framework of buffer management for multi-project systems in the critical chain project management (CCPM) method, expressed in the form of max-plus linear (MPL) representation. Since time buffers are inserted in the projects for absorbing uncertainties in task durations and protecting the completion times, the proposed method provides a procedure for frequently surveying the rates of consumed buffers and the rate of elapsed times. Their relation expresses the performance of the projects which is plotted on a chart through the completed processes. The chart presents the current performance of the projects and their interaction, which alerts managers to make necessary decisions at the right time for managing each project and the entire multi-project system. The proposed framework can analyze the complex system readily, and it enables managers to make an effective decision on scheduling. The effectiveness of the framework is demonstrated through a numerical example.

Proportional Fair Subcarrier Allocation Scheme in the Multiuser OFDM Wireless Mobile Communication Systems (다중 사용자 OFDM 무선 이동통신 환경에서의 비례공정 부반송파 할당기법)

  • Park Hyo soon;Kim Jun soek;Lee Jai yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1291-1297
    • /
    • 2004
  • In this paper, the new scheduling algorithm that supports the maximization of system throughput and the proportional fairness among non-real time traffic users is proposed in OFDMA wireless mobile communication systems. The concept of the proposed algorithm is based on the proportional fairness algorithm, which is deployed in 3GPP2, and sorting method. The proportional fairness algorithm is adapted to allocate the number of subcarrier per user. A sorting method is contributed to the maximization of system throughput in the practical allocation of subcarrier per user. Simulation results show that new algorithm had better performance than the max rate rule in case of fairness, higher throughput than the scheduling algorithm without sorting method. Even though the system throughput of the proposed algorithm is almost same with the iteration scheme using subcarrier swapping method between users, the computational time of the former is reduced up to 3 times than the latter.

Proportional Fair Scheduling Algorithm in OFDMA-Based Wireless Systems with QoS Constraints

  • Girici, Tolga;Zhu, Chenxi;Agre, Jonathan R.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.30-42
    • /
    • 2010
  • In this work we consider the problem of downlink resource allocation for proportional fairness of long term received rates of data users and quality of service for real time sessions in an OFDMA-based wireless system. The base station allocates available power and subchannels to individual users based on long term average received rates, quality of service (QoS) based rate constraints and channel conditions. We formulate and solve a joint bandwidth and power optimization problem, solving which provides a performance improvement with respect to existing resource allocation algorithms. We propose schemes for flat as well as frequency selective fading cases. Numerical evaluation results show that the proposed method provides better QoS to voice and video sessions while providing more and fair rates to data users in comparison with existing schemes.