• 제목/요약/키워드: mature zygotic embryo

검색결과 18건 처리시간 0.026초

Rapid in vitro Germination of Zygotic Embryos via Endosperm Removal in Eleutherococcus senticosus

  • You Xiang-Ling;Choi Yong-Eui;Yi Jae-Seon
    • Journal of Plant Biotechnology
    • /
    • 제7권1호
    • /
    • pp.75-80
    • /
    • 2005
  • Eleutherococcus senticosus (also called Acanthopanax senticosus), belonging to Araliaceae family, has been used as an important medicinal woody plant. Mature seeds of Eleutherococcus senticosus have rudimentary (extremely immature) zygotic embryos and require a long-term stratification for about 18 months to induce germination. Here, through the methods of endosperm removal and other exogenous treatments, we investigated the factors for inducing rudimentary embryos by in vitro culture, Rudimentary zygotic embryos in seeds were at globular to heart-shaped stage at about $250{\mu}m$ in length just after harvest of fruits. When the seeds without testa were cultured on 1/2 MS (Murashige and Skoog 1962) medium, they did not germinate regardless of medium and sucrose concentrations but the removal of endosperm tissue markedly stimulated the growth of rudimentary zygotic embryos. The embryo reached ear-lier maturation, once when the endosperm surrounding the rudimentary embryos was removed. Rudimentary zygotic embryos developed cotyledons within 3 weeks of culture after endosperm emoval. However, post-mature zygotic embryos failed to germinate though they were morphologically normal, indicating another dormancy of embryos. $GA_3\;(2.0\;\cal{mg/L})$ and/or charcoal ($0.2\%$) treatment rapidly enhanced the germination of zygotic embryos. These results suggest that E. senticosus seeds have double dormancy; i. e. morphological rudimentary dormancy influenced by surrounding endosperm and physiological dormancy after post-maturation of zygotic embryos. Based on the above findings, we established the rapid germination of rudimentary zygotic embryos by in vitro culture of excised seeds with endosperm removal and $GA_3$ treatment.

Origin of Somatic Embryo Induced from Cotyledons of Zygotic Embryos at Various Developmental Stages of Ginseng

  • Soh, Woong-Young
    • Journal of Plant Biology
    • /
    • 제37권3호
    • /
    • pp.365-370
    • /
    • 1994
  • Excised cotyledon segments of ginseng zygotic embryos at various developmental stages were cultured on MS basal medium from which somatic embryos were directly induced. The frequency of somatic embryo formation on the segments declined with the advancing zygotic embryo maturity. All of the cells in the cotyledons of immature zygotic embryos were smaller and more densely cytoplasmic than those in mature embryos. Histological examinations revealed that the poly-somatic embryos formed on immature embryos were of multi-cell originand derived from the epidermal and subepidermal cell layers. However, in the cotyledon of germinating zygotic embryos, only theepidermal cells were densely cytoplasmic and singularly competent to develop into somatic embryos resulting into single embryos at a frequency of 100%.

  • PDF

Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose

  • Kim, Suk Weon;Oh, Myung Jin;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.199-203
    • /
    • 2009
  • Rugosa rose (Rosa rugosa) is cultivated as a garden flower and an important genetic resource for the breeding of roses (R. hybrida). This study describes culture conditions for high frequency plant regeneration from zygotic embryo explants via somatic embryogenesis in rugosa rose. Mature zygotic embryo, cotyledon, and radicle explants formed embryogenic calluses at frequencies of 38, 6.7, and 8.8% when cultured on half-strength Murashige and Skoog medium (${\frac{1}{2}}MS$) supplemented with 2.26, 9.05, and $9.05{\mu}M$ 2,4-dichlorophenoxyacetic acid, respectively. Embryogenic calluses produced numerous somatic embryos, which then developed into plantlets on ${\frac{1}{2}}MS$ without growth regulators. Regenerated plantlets were grown to whole plants in a growth chamber.

Cryopreservation of Hevea brasiliensis zygotic embryos by vitrification and encapsulation-dehydration

  • Nakkanong, Korakot;Nualsri, Charassri
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.333-339
    • /
    • 2018
  • The mature zygotic embryos of the Hevea brasiliensis were cryopreserved through the use of the vitrification and encapsulation/dehydration techniques. In all the experiments, the zygotic embryos were pre-cultured for three days in the MS medium supplemented with 0.3 M sucrose before they were used for the cryopreservation technique. In the vitrification procedure, the effect of the plant vitrification solutions (PVS2 and PVS3) and exposure time were studied. The highest survival rate (88.87%) and regrowth (66.33%) were achieved when the precultured zygotic embryos were incubated in a loading solution for 20 minutes at $0^{\circ}C$. They were subsequently exposed to PVS2 for 120 minutes at $0^{\circ}C$ and plunged directly into liquid nitrogen. Cryopreservation by the encapsulation-dehydration method was successfully done by leaving the encapsulated zygotic embryos in a laminar flow for 4 hours prior to plunging into a LN. The survival rate and regrowth of the encapsulated zygotic embryos were 37.50% and 27.98%, respectively. The cryopreserved zygotic embryos were able to develop into whole plants.

Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryo Culture in Pepper (Capsicum annuum L.)

  • Jo, Jeong-Yon;Choi, Eun-Young;Choi, Dong-Su;Lee, Kwang-Woong
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.127-135
    • /
    • 1996
  • An efficient system of somatic embryogenesis was established for the red pepper plant (Capsicum annuum L. cv. Nokkwang) usign immature zygotic embryos. The size of the immature zygotic embryos and the concentrations of 2, 4-D and sucrose were found to be critical. Somatic embryos were induced via callus or directly from explants and regenerated into plantlets successfully. When zygotic embryos 1~2 mm long were cultured on the modified Murashige-Skoong (MS) medium supplemented with 2 mg/L 2, 4-D for 3 weeks in the dark, somatic embryos were induced directly from the apical region of zygotic embryos with the highest frequency being approximately 90%. To mature the somatic embryos, ABA and an ethylene inhibitor AgNO3 were used. The highest frequency of shoot regeneration (25% in each) resulted at 2$\mu$M ABA or 20$\mu$M AgNO3 treatment at rates 3.7 and 1.6 times control, respectively. Shoots developed mainly from the cotyledonary node on CoCl2-containing medium, and from the upper side of cotyledon on medium containing AgNO3 while the embryos on the control medium produced shoots from both the cotyledonary node and the upper region of cotyledons both at frequencies of 50%. Indirect somatic embryogenesis via callus was induced at an efficiency of approximately 10% with zygotic embryos 3~4 mm long cultured on MS medium containing 5~10 mg/L, 2, 4-D for 5~7 weeks under a continuous light condition. The plants regenerated from the somatic embryos were morphologically normal. Using scanning electron microscopy, the direct and indirect somatic embryogeneses were observed to follow the globular, heart and torpedo stages, similar to zygotic embryogenesis. Also, suspensors appeared in the early globular and ovoid-shaped late globular embryos during indirect somatic embryogenesis.

  • PDF

Direct somatic embryogenesis, plant regeneration and genetic transformation of Panax ginseng

  • Park, Yong-Eui;Yang, Deok-Chun;Park, Kwang-Tae;Soh, Woong-Young;Hiroshi Sano
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.85-89
    • /
    • 1999
  • Somatic embryogendesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology. This paper describes the direct somatic embryogenesis from zygotic embryos of Panax ginseng is reversely related to normal axis growth of zygotic embryos by the experiment of various chemical treatments. Under the normal growth condition, the apical tips of embryo axis produced an agar-diffusible substance, which suppressed somatic embryo development from cotyledons. Although the cells of zygotic embryos were released from the restraint of embryo axis, various factors were still involved for somatic embryo development. Electron microscopic observation revealed that the ultrastructure of cells of cotyledon epidermis markedly changed before initiation of embryonic cell division, probably indicating reprogramming events into the cells embryogenically determined state. Polar accumulation of endogenous auxin or cell-cell isolation by plasmolysis pre-treatment is the strong inducer for the somatic embryo development. The cells for the process of somatic embryogenesis might be determined by the physiological conditions fo explants and medium compositions. Direct somatic embryos from cotyledons fo ginseng were originated eithrer from single or multiple cells. The different cellular origin of somatic embryos was originated either from single or multiple cell. The different cellular origin of somatic embryos was depended on various developmental stages of cotyledons. Immature meristematic cotyledons produced multiple cell-derived somatic embryos, which developed into multiple embryos. While fully mature cotyledons produced single cell-derived single embryos with independent state. Plasmolysis pretreatment of cotyledons strongly enhanced single cell-derived somatic embryogenesis. Single embryos were converted into normal plantlets with shoot and roots, while multiple embryos were converted into only multiple shoots. GA3 or a chilling treatment was prerequisite for germination and plant conversion. Low concentration of ammonium ion in medium was necessary for balanced growth of root and shoot of plantlets. Therefore, using above procedures, successful plant regeneration of ginseng was accomplished through direct single embryogenesis, which makes it possible to produce genetically transformed ginseng efficently.

  • PDF

차나무 잎과 배 배양에 있어서 식물 생장조절물질이 형태형성에 미치는 영향 (Effect of exogeneous plant growth regulators on morphogenetic response in vitro by embryo and leaf cultures of Camellia sinensis(L.) O. Kuntze)

  • PARK, Young Goo;AHN, In-Suk;BOZHKOV Peter
    • 식물조직배양학회지
    • /
    • 제24권3호
    • /
    • pp.129-135
    • /
    • 1997
  • 한국 야생차나무의 잎절편과 배배양에서 생장조절물질의 첨가에 따른 형태형성 과정의 변이를 조사하였다. 그 결과 접합자배는 싸이토키닌을 5-20$\mu\textrm{M}$을 첨가한 MS 배지에서 직접적인 체세포 배와 부정아 및 액아 발생률이 높았으며 옥신의 함량이 높아질수록 형태형성율이 급격히 저하되었다. 1/2 MS 및 1/4 SH배지에 $10\mu\textrm{M}$ IBA가 첨가된 배지에서 모든 줄기가 발근 되었다. MS배지에 2,4-D를 첨가한 배지에서 미성숙 접합자 배를 배양한 결과 체세포배성 캘러스가 유발되었다. 성숙된 접합자 배를 발아시킨 후 어린잎을 채취하여 고농도의 옥신 (IBA와 NAA) 또는 싸이토키닌 (BAP)이 함유된 MS배지에 배양한 결과 체세포배 형성 캘러스가 발생되었으며 또한 직접적인 체세포배가 발생하였다. 그러나 뿌리와 줄기 형성에는 각각 요구하는 옥신의 농도와 종류가 각각 달랐다.

  • PDF

Embryo Culture of Taxus wallichiana (Zucc.)

  • Datta Mukul Manjari;Jha Sumita
    • Journal of Plant Biotechnology
    • /
    • 제6권4호
    • /
    • pp.213-219
    • /
    • 2004
  • Zygotic embryos were excised from immature and mature seeds of the Himalayan yew, Taxus wallichiana. The embryos germinated precociously when kept in darkness for 5 weeks and developed into full seedlings within 10-12 weeks. The highest rate of embryo germination ($81\%$) was obtained in modified Lloyd & McCown' s woody plant medium containing macro and micronutrients at half strength supplemented with $1\%$ activated charcoal, which supported both the best embryonic growth ($43\%$) and seedling development ($32\%$). However, the supplementation of basal media with kinetin, thidiazuron, 6-benzyl aminopurine or $GA_3$ had no effect on the germination of the embryos. The embryos derived from immature seeds germinated but the frequency of embryonic growth was better in mature seeds. Stratification of seeds effected precocious germination of embryos. Seeds kept at $4^{\circ}C$ for 1 week germinated earlier and at a higher frequency irrespective of the stage of seed maturity, while the germination rate declined with prolonged cold treatment for 1 month at that same temperature. Analysis of taxanes in germinating seedlings revealed that root tissues contained high levels of taxol, 10-deacetyl-baccatin ill and baccatin ill as compared to shoots. Thus embryo culture technique appears to overcome the lengthy dormancy requirement of T. wallichiana seeds.

Effects of Date and Growth Regulators on the Culture of' Immature Zygotic Embryos of North American Ginseng

  • Hovius, Marilyn H. Y.;Saxena, Praveen K.;Proctor, John T. A.
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.14-22
    • /
    • 2007
  • As the zygotic embryo of North American ginseng (Panax quinquefolius L.) matured during stratification over 203 days it grew from 0.75 to 5.2 mm. Embryo excision and culturing on media containing different concentrations of two growth regulators, gibberellic acid ($GA_3$, 1 to 10 ${\mu}M$) and benzyladenine (BA, 1 to 5 ${\mu}M$), during stratification, showed that shoot and root number and the shoot, root and cotyledon length increased with increased stratification time. Gibberellic acid was the more effective growth regulator for increasing shoot and root number and shoot, root and cotyledon lengths. Immature embryos (stratified for up to 63 days) needed growth regulators for further development. Cultures on $GA_3$ at the last culture date (stratified for 203 days) when embryos were mature, produced multiple shoots but there was no effect of $GA_3$ concentration. Benzyladenine inhibited shoot and root growth regardless of embryo stratification. Growth regulators had little effect on cotyledon length of mature embryos. Embryos cultured on $GA_3$ combined with BA were green on all culture dates whereas greening in the control and BA treatments increased with culture date. The BA treatments induced 100% swelling of the embryos on the final culture date while in the control and $GA_3$ treatments there was no swelling. There was little or no curling in the control and BA treatments and a linear decrease in curling with culture date in the $GA_3$ and $GA_3$ + BA treatments.

Somatic embryogenesis from the axillary meristems of peanut (Arachis hypogaea L.)

  • Singh, Shweta;Hazra, Sulekha
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.333-340
    • /
    • 2009
  • Developmental anomalies in the plumule meristem of peanut (Arachis hypogaea L.) somatic embryos resulted in poor shoot differentiation and reduced plant recovery. Existing meristems with caulogenic potential have never been tested for embryogenesis in peanut. The present experiment was designed to test the mature zygotic embryo axis derived plumule with three meristems for somatic embryogenesis. Embryogenic masses and embryos developed from the caulogenic meristems in the axils. Exposure of 2 weeks in primary medium with $90.5{\mu}M$ 2,4-D suppressed the shoot tip differentiation temporarily which then regained the ability to form the shoot on withdrawal of 2,4-D. Exposure of 4 weeks in primary medium with $90.5{\mu}M$ 2,4-D suppressed the shoot tip differentiation irreversibly. No shoot formation was noted from the tips in any of the cultures which were in secondary medium with $13.6{\mu}M$ 2,4-D. Development of somatic embryos directly from axillary meristems was confirmed histologically. Conversion frequency of these embryos was 11%. Thus, in this report, we describe a method to obtain somatic embryos from the determined organogenic buds of the axillary meristem, by culturing the nodal explant vertically on embryo induction medium. It also displays the possibility of obtaining both embryogenic and organogenic potential in two parts of the same explant simultaneously. The possibility of extending this approach for genetic transformation in in vivo system through direct DNA delivery or Agrobacterium injection in meristems can also be explored. Using Agrobacterium rhizogenes, we have demonstrated the possibility of gene transfer in the axillary meristems of seed-derived plumule explant.