• Title/Summary/Keyword: matt-schottky

Search Result 2, Processing Time 0.018 seconds

Electronic Behaviors of Passive Films Formed on Fe-Cr and Fe-Cr-Mo Ferritic Stainless Steels Studied by Mott-Schottky and Cyclic Voltammetry Techniques

  • Kim, Suk-Won;Yoon, Sang-In;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • The effects of Cr content and film formation potential on electronic behaviors of the passive film on Fe-Cr alloys were investigated in borate buffer solution. Influence of pH on passive films of both Fe-Cr and Fe-Cr-Mo alloys was also investigated. Mott-Schottky and cyclic voltammetry techniques were used to elucidate electronic behaviors of passive films and their electrochemical characteristics. AES analysis of passive films was carried out. Results showed that doping density decreased as Cr content and film formation potentials increased. The addition of Mo to Fe-Cr alloy had little influence on donor densities in pH 9.2 solution but some effects on the decrease in donor densities in pH 1.6 acidic solution.

Effects of Edta on the Electronic Properties of Passive Film Formed on Fe-20Cr In pH 8.5 Buffer Solution

  • Cho, EunAe;Kwon, HyukSang;Bernard, Frederic
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.171-177
    • /
    • 2003
  • The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ~ 3.0 eV, irrespective of film formation potential from 0 to 700 $mV_SCE$ and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted $\gamma$-$Fe_2O_3$.