• Title/Summary/Keyword: matrix gene

Search Result 426, Processing Time 0.028 seconds

Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro

  • Choi, Mi-Hye;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.167-175
    • /
    • 2011
  • Purpose: Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gene expression profile in PDL cell proliferation, differentiation, and mineralization in vitro. Methods: PDL cells were grown until confluence, which were then designated as day 0, and nodule formation was induced by the addition of 50 ${\mu}g$/mL ascorbic acid, 10 mM ${\beta}$-glycerophosphate, and 100 nM dexamethasone to the medium. The dishes were stained with Alizarin Red S on days 1, 7, 14, and 21. Real-time polymerase chain reaction was performed for the detection of various genes on days 0, 1, 7, 14, and 21. Results: On day 0 with a confluent monolayer, in the active proliferative stage, c-myc gene expression was observed at its maximal level. On day 7 with a multilayer, alkaline phosphatase, bone morphogenetic protein (BMP)-2, and BMP-4 gene expression had increased and this was followed by maximal expression of osteocalcin on day 14 with the initiation of nodule mineralization. In relationship to apoptosis, c-fos gene expression peaked on day 21 and was characterized by the post-mineralization stage. Here, various genes were regulated in a temporal manner during PDL fibroblast proliferation, extracellular matrix maturation, and mineralization. The gene expression pattern was similar. Conclusions: We can speculate that the gene expression pattern occurs during PDL cell proliferation, differentiation, and mineralization. On the basis of these results, it might be possible to understand the various factors that influence PDL cell proliferation, extracellular matrix maturation, and mineralization with regard to gene expression patterns.

Curcumin Effect on MMPs and TIMPs Genes in a Breast Cancer Cell Line

  • Hassan, Zeinab Korany;Daghestani, Maha Hassan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3259-3264
    • /
    • 2012
  • Curcumin (CM) possesses anti-cancer activity against a variety of tumors. Matrix metalloproteinases (MMPs) play an important role in remodeling the extracellular matrix and their activities are regulated by tissue inhibitor of metalloproteinases (TIMPs) family. Control of MMP and TIMP activity are now of great significance. In this study, the effect of CM is investigated on metastatic MMPs and anti-metastatic TIMPs genes on MDA breast cancer cells cultured in a mixture of DMEM and Ham's F12 medium and treated with different concentrations of CM (10, 20 and $40{\mu}M$ for various lengths of time. Reverse transcription followed by quantitative real time PCR was used to detect the gene expression levels of MMPs and TIMPs in CM-treated versus untreated cases and the data were analyzed by one-way ANOVA. At high concentrations of curcumin, TIMP-1, -2, -3 and -4 genes were up-regulated after 48 hours of treatment, their over-expression being accompanied by down-regulation of MMP-2 and MMP-9 gene expression levels in a concentration- and time-dependent manner. These results suggest that curcumin plays a role in regulating cell metastasis by inhibiting MMP-2 and MMP-9 and up-regulating TIMP1 and TIMP4 gene expression in breast cancer cells.

Matrix Attachment Regions (MARs) as a Transformation Booster in Recalcitrant Plant Species

  • Han, Kyung-Hwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.225-231
    • /
    • 1997
  • For genetic engineering to be commercially viable, an efficient transformation system is needed to produce transgenic plane from diverse genotypes ("generalized protocol"). Development of such a system requires optimization of a number of components such as gene transfer agent, plant tissues competent for both regeneration and transformation, and control of transgene expression. Although several novel gene transfer methods have been developed for plane, a majority of stably transformed plane express the introduced genes at low levels. Moreover, silencing of selectable marker genes shortly after their incorporation into plant chromosomes may result in low recovery of transgenic tissues from selection. Matrix attachment regions (MARs) are DNA sequences that bind to the cell's proteinaceous nuclear matrix to form DNA loop domains. MARs have been shown to increase transgene expression in tobacco cells, and reduce position in mature transgenic plants. Flanking an antibiotic resistance transgene with MARs should therefore lead to improved rates of transformation in a diversity of species, and may permit recalcitrant species and genotypes to be successfully transformed. Literature review and recent data from my laboratory suggest that MARs can serve as a transformation booster in recalcitrant plant species.

  • PDF

Matrix Metalloproteinase-3 Gene Polymorphisms (A(-267)G, A658G, T813C) is Associated with Type 2 Diabetes in Koreans (제2형 당뇨병과 MMP3 (A(-267)G, A658G, T813C)의 다형성과의 연관성)

  • Yoo, Min;Kim, Hyo-Jeong;Qing, Ye;Kim, Jong-Won;Kim, Su-Won
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.602-606
    • /
    • 2010
  • Type 2 diabetes is a typical polygenic disease complex, for which several common risk alleles have been identified. Proteins in the matrix metalloproteinase-3 (MMP3) family are involved in the breakdown of the extracellular matrix in normal physiological processes such as embryonic development, reproduction and tissue remodeling, as well as in disease processes. Therefore, we investigated the genotype for the A(-267)G, A658G and T813C polymorphisms in the MMP3 gene in the Korean population and compared genotypes of patients with those of the control group. 200 patients (male 108, female 92), who had previously been diagnosed with type 2 diabetes (T2DM) and 100 control subjects (male 36, female 64) participated in this study. There was a strong association between A(-267)G and A658G polymorphism in the MMP3 gene and T2DM. The present study shows that MMP3 polymorphisms (A(-267)G and A658G) may be associated with the pathogenesis of T2DM. Further studies with a larger population may be needed for the development of diagnostic methods at a genetic level, such as DNA chip.

Regulation of Matrix Metalloproteinase-1 Expression by the Homeodomain Transcription Factor Caudal in Drosophila Intestine (초파리 장조직에서 Caudal 전사조절인자에 의한 matrix metalloproteinase-1 발현 조절)

  • Lee, Shin-Hae;Hwang, Mi-Sun;Choi, Yoon-Jeong;Kim, Young-Shin;Yoo, Mi-Ae
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1600-1607
    • /
    • 2012
  • The matrix metalloproteinase (MMP) family plays essential roles in physiological processes such as embryonic development, angiogenesis, wound healing, and tissue homeostasis as a consequence of MMPr capacity for breaking down many types of extracellular matrix proteins. Imbalanced regulation of MMP expression can also lead to pathological conditions such as tumor progression. We recently reported that the Drosophila Mmp1 gene is highly expressed in the digestive tract and is required for the maintenance of intestinal homeostasis such as by restriction of uncontrolled intestinal stem cell proliferation. However, the regulatory mechanisms of MMP gene expression in the intestine remain unclear. In this study, we determined that the expression of Mmp1 is regulated by the homeodomain transcription factor Caudal. Experiments using the targeted expression of Caudal under the regulation of Gal4-UAS system indicated that endogenous Caudal is required for the Mmp1 gene expression in the adult Drosophila intestine and that exogenous Caudal induces Mmp1 expression. Transient transfection experiments indicated that Caudal can activate the promoter activity of Mmp1 and that several putative Caudal binding sites in the 5'-flanking region of the Mmp1 gene may be critical to the upregulation by Caudal. Our data suggest that Mmp1 is one of the target genes of Caudal in physiological normal condition and in tumorigenesis.

Cloning of a Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) from a Scylliorhinus torazame (두툽상어에서 tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) 유전자의 클로닝)

  • Kim, Cha-Soon;Bae, Su-Kyoung;Kim, Kyu-Won;Kim, Yung-Jin
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.286-292
    • /
    • 1996
  • Angiogenesis is a fundamental process by which new blood vessels are formed. It is essential in embryo development, and wound healing. Furthermore, malignant tumor growth and metastasis are also angiogenesis-dependent. In the catilage tissue, normal angiogenesis process is suppressed. In fact, it was reported that angiogenesis-inhibitory substances were isolated from the extracts of cow and shark catilage tissue. In order to isolate genes involved in the regulation of angiogenesis from a catilage fish, we constructed a shark cDNA library from Scylliohinus torazame. We then screened the library using hyman tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) gene as a probe. Among the 4 X 10$^{4}$ plaques screened, we isolated 2 positive clones (T-1, T-2). Restriction enzyme analysis revealed that the T-1 clone contains 0.8 kb cDNA insert, and the T-2 clone contains 1.2 kb and 2.2 kb inserts, respectively. Further DNA sequence analysis shows that the DNA sequence of the T-1 clone is 53% homologous to that of the human TIMP-1 gene.

  • PDF

Overexpression of Twist and Matrix Metalloproteinase-9 with Metastasis and Prognosis in Gastric Cancer

  • Gao, Xing-Hui;Yang, Xue-Qin;Wang, Bi-Cheng;Liu, Shao-Ping;Wang, Fu-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5055-5060
    • /
    • 2013
  • Objective: Twist, a basic helix-loop-helix transcription factor, plays a key role in the metastatic progression of human cancer. Matrix metalloproteinase (MMP)-9 is an endopeptidase that digests basement membrane type IV collagen, therefore being possibly related to tumor progression. It has been reported that Twist and matrix metalloproteinase-9 (MMP-9) are expressed in gastric cancers. However, the exact roles of Twist and MMP-9 in tumor metastasis and prognosis remain unclear. The aim of this study was to casts light on this question. Methods:Twist and MMP-9 expression in tissue sections of 37 gastric carcinomas was evaluated with immunohistochemistry. The staining results were compared with clinicopatholgic features and to patients' outcome. Results: Twist positive expression was significantly increased in gastric cancer cases with lymph node metastasis (P=0.023). But no correlations were found between MMP-9 overexpression and clinicopathologic features, such as recurrence, TNM stage, and lymph node metastasis. Overall survival (OS) was significantly correlated with recurrence, serosa invasion, TNM stages, distant metastasis, and MMP-9 (P=0.027, 0.021, 0.000, 0.024 and 0.036, respectively). Disease-free survival (DFS) was prominently related to recurrence location, serosa invasion and TNM stages (P=0.000, 0.038 and 0.003, respectively). In the Cox regression multivariate analysis, TNM stage, distant metastasis and MMP-9 were significantly associated with prognosis of gastric cancer (P=0.002, 0.019, and 0.032, respectively). Conclusions: This study showed Twist positive expression to be significantly correlated with lymph node metastasis in gastric cancer. MMP-9 overexpression is associated with OS, suggesting that MMP-9 is a prognostic indicator for survival in patients with gastric cancer.

Suppression of Matrix Metalloproteinase-9 Expression of Flavonoids from Metasequoia glyptostroboides (낙우송(Metasequoia glyptostroboides)으로부터 분리한 flavonoid의 금속단백분해효소-9 발현 억제 활성)

  • Yang Jae-Young;Lee Ho-Jae;Kho Yung-Hee;Kwon Byoung-Mok;Chun Hyo Kon
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.231-235
    • /
    • 2005
  • Matrix metalloproteinases (MMPs) are a family of structurally and functionally related zinc-dependent enzymes responsible for proteolytic degradation of extracellular matrix components such as base membrane or interstitial stroma. MMPs play an important role in a variety of physiological and pathological tissue remodeling processes, including wound healing, embryo implantation, tumor invasion and metastasis. Since MMP-9 (gelatinase B) has unique ability to cleave type IV collagen, gene expression of MMP-9 has been focused on as a pharmacological target. Flavonoids are a class of compounds that are widely spread in plants. In the coures of screening for the suppressors of MMP-9 gene expression from natural products, Metasequoia glyptostroboides was selected. Six flavonoids, sciadopitysin, isoginkgetin, bilobetin, 2,3-dihydrohinokiflavone, luteolin and apigenin were purified as suppressors of MMP-9 gene expression from M. glyptostroboides. The suppressing activity of the isolated flavinoids on the MMP-9 gene expression was measured by gelatin zymography and Nothern blot analysis.

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.