• Title/Summary/Keyword: matrix attachment regions (MARs)

Search Result 5, Processing Time 0.018 seconds

Matrix Attachment Regions (MARs) as a Transformation Booster in Recalcitrant Plant Species

  • Han, Kyung-Hwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.225-231
    • /
    • 1997
  • For genetic engineering to be commercially viable, an efficient transformation system is needed to produce transgenic plane from diverse genotypes ("generalized protocol"). Development of such a system requires optimization of a number of components such as gene transfer agent, plant tissues competent for both regeneration and transformation, and control of transgene expression. Although several novel gene transfer methods have been developed for plane, a majority of stably transformed plane express the introduced genes at low levels. Moreover, silencing of selectable marker genes shortly after their incorporation into plant chromosomes may result in low recovery of transgenic tissues from selection. Matrix attachment regions (MARs) are DNA sequences that bind to the cell's proteinaceous nuclear matrix to form DNA loop domains. MARs have been shown to increase transgene expression in tobacco cells, and reduce position in mature transgenic plants. Flanking an antibiotic resistance transgene with MARs should therefore lead to improved rates of transformation in a diversity of species, and may permit recalcitrant species and genotypes to be successfully transformed. Literature review and recent data from my laboratory suggest that MARs can serve as a transformation booster in recalcitrant plant species.

  • PDF

Two Novel Families of Short Interspersed Repetitive Elements from the Mud Loach (Misgurnus mizolepis)

  • Lim, Hak-Seob;Kim, Moo-Sang;Kim, Ok-Soon;Kim, Ji-Yeon;Choi, Young-Mi;Ahn, Sang Jung;Lee, Hyung-Ho
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.186-192
    • /
    • 2006
  • Short interspersed repetitive elements (SINEs) are dispersed throughout eukaryotic genomes. These SINEs have been shown to be excellent phylogenetic markers for the closed related species. In this report, we isolated two novel families of SINEs from the mud loach. The two SINE families, mlSINE-L and mlSINE-S, have genomic lengths of about 410bp and 270bp, respectively. 5' and 3' ends of the SINE families are well conserved and highly homologous to each of corresponding ends of RSg-1 and SmaI SINEs. Phylogenetic analysis shows that mlSINEs are unique to the mud loach. A dot blot hybridization experiment shows that mlSINE-L has an estimated copy number of $1{\times}10^3$ per $2{\times}10^9bp$ (2.8 pg) and is more frequently distributed at nuclear matrix attachment regions (MARs) than loop DNAs. The result suggests that mlSINEs may preferentially integrate in or near MARs.

  • PDF

Cloning and Characterization of Replication Origins from Misgurnus mizolepis (미꾸라지로부터의 복제원점 클로닝 및 그 특성에 관한 연구)

  • Lim Hak-Seob;Kim Moo-Sang;Lee Hyung-Ho
    • Journal of Aquaculture
    • /
    • v.8 no.3
    • /
    • pp.209-220
    • /
    • 1995
  • The nuclear matrix was isolated from Misgumus mizolepis liver nuclei by low salt extraction and restriction enzyme treatment. The structure was digested with proteinase K. After centrifugation, matrix attachment regions (MARs) were obtained by RNase treatment and phenol-chloroform extraction. The result leads to the appearance of smeared bands in the range of about 0.3-15 kb. pURY19 vector was constructed by inserting 2.13 kb Eco47 III fragment of the yeast uracil 3 gene into the unique Ssp I site of pUC19 plasmid vector as a selection marker. This vector is unable to be maintained in Sacrharomyces cerevisiae by itself since it cannot replicate as an extrachromosomal element. Using this system, we attempted cloning the ARS (autonomously replicating sequence) from M. mizelepis to develop an efficient expression vector for the transgenic fish. pURY19N_{l-62}$ were constructed by inserting MARs in pURY19 plasmid vector and transformation of E. coli $DH5\alpha$. Replication origins (ARS) of M. mizolepis were isolated, which enabled the vector to replicate autonomously in S. cerevisiae. The cloned DNA fragments were sequenced by Sanger's dideoxy-chain termination method. All clones were AT-rich. $pURY19N_6$, one of the clones, expecially contained ARS consensus sequence, Topoisomerase II consensus, near A-box and T-box.

  • PDF

Analysis of Fish Expression Vectors for Construction of Two MARs Expression Vector System in Fish Cell Line

  • Lim, Hak-Seob;Park, Jin-Young;Hwnag, Jee-Hwang;Kim, Moo-Sang;Lee, Hyung-Ho
    • Journal of Aquaculture
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • In previously study we isolated several fish matrix attachment regions (MARs) capable of replicating the plasmid by itself. In this study we construct a fish expression vector pBaEGFP(+) containing mud loach ${\beta}$-actin promoter EGFP as reporter gene and SV40 signal. To analyze the effects of the fish expression vector respectively. The fish ARS containing constructs pBaEGFP(+)-ARSs were transfected cells with pBaEGFP(+)-ARS101 and pBaEGFP(+)-ARS223 reduced 10 days to 25 days and then was constant to 30 days after transfection while that of the control vector without ARS element was basal level. The intensity of both constructs showed about 30fold of the intensity compared with the control vector on 30days after transfection individually .E. coli back-transformation analysis shows that pBaEGFP(+)-ARS223 and pBaEGFP(+)-ARS905 maintain in episomal state at least 30 days after transfection. The result indicates that both may be able to replicate the vector in BF-2 cell. Therefore the matrix-attached ARSs enhancing expression of the reporter gene might be useful as a component o the expression vector for transgenic studies.

  • PDF