• 제목/요약/키워드: matrix analytical method

검색결과 433건 처리시간 0.018초

전달 행렬을 이용한 진동 및 방사소음 해석 (I) : 무한 원통형 몰수체 (The Forecd Vibration Analysis using Transfer Matrix(I) : Immersed Infinite Circular Cylindrical Shell)

  • 정우진;신구균;전재진;이헌곤
    • 소음진동
    • /
    • 제4권4호
    • /
    • pp.443-449
    • /
    • 1994
  • In the analysis of circular cylindrical shell's vibration and sound radiation, there are numerical and analytical methods. Numerical methods such as F.E.M and B.E.M, have the limit of frequency range. Analytical method can be applied to the circular cylindrical shell from low frequency to high frequency. In this paper, we use the analytical method for shell, and numerical method, F.D.M, for fluid. We also use the method using transfer matrix and eigenanalysis of transfer matrix which can therefore calculate the rotational d.o.f that is very imkportant in synthesis with inner structure. Inner structure has much effect on the submerged circular cylindrical shell vibration and sound rediation. Results for the immersed circular cylindrical shell vibration and sound radiation are compared with the analytic solutions.

  • PDF

Determination of Boron Steel by Isotope-Dilution Inductively Coupled Plasma Mass Spectrometry after Matrix Separation

  • Park, Chang-J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1541-1544
    • /
    • 2002
  • The concentration of B in steels is important due to its influence on mechanical properties of steel such as hardenability, hot workability, and creep resistance. An analytical method has been developed to determine B in steel samples by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). National Institute of Standard and Technology Standard Reference Material (NIST SRM) 348a was analyzed to validate the analytical method. The steel sample was digested in a centrifuge bottle with addition of aqua regia and $^{10}B$ spike isotope. Sample pH was then adjusted to higher than 10 to precipitate most matrix elements such as Fe, Cr, and Ni. After centrifugation, the supernatant solution was passed through a cation exchange column to enhance the matrix separation efficiency. B recovery efficiency was about 37%, while matrix removal efficiency was higher than 99.9% for major matrix elements. The isotope dilution method was used for quantification and the determined B concentration was in good agreement with the certified value.

화장품 중 zinc pyrithione 분석방법 개발에 대한 연구 (A study on the development of analytical method for zinc pyrithione in cosmetics)

  • 정정설;배경미;손승환;박정우;김지현;홍성택;선일식
    • 분석과학
    • /
    • 제28권3호
    • /
    • pp.160-167
    • /
    • 2015
  • 이 연구에서는 화장품 중 사용한도 성분으로 지정되어 있으나 아직 분석방법이 개발되지 않은 살균 보존 성분으로 사용되는 zinc pyrithione (ZnPT)에 대한 분석방법을 개발 확립하기 위한 목적으로 국 내외 자료 및 문헌을 조사하여 분석방법을 설정하였으며, 분석방법의 유효성 확인에 필요한 base matrix 시료의 선정을 위해 대상성분들의 사용량 및 사용제품들에 대한 자료를 조사하였다. Base matrix 시료를 선정·제조한 후 분석방법 유효성 확인 절차에 따라 각 대상성분들에 대한 분석방법의 유효성을 확인하였으며 실험실간 분석방법의 유효성 확인 수행을 통해 개발된 분석방법을 검증하여 확립하였다. 최종적으로 실제 시중 유통 화장품을 대상으로 개발된 분석방법을 적용하여 분석방법의 적합성을 검증하였다. 이 연구를 통해 개발된 분석방법을 '화장품 중 배합한도 성분 분석법 가이드라인'으로 제시함으로서 국내 시장 유통화장품의 검정에 활용되어 품질의 향상 및 국민 보건 안전성이 증진될 것이며 국내 화장품 산업의 국제 경쟁력 강화로 인해 수출 증대에 기여할 것으로 기대된다.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Form-finding analysis of suspension bridges using an explicit Iterative approach

  • Cao, Hongyou;Zhou, Yun-Lai;Chen, Zhijun;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.85-95
    • /
    • 2017
  • This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the proposed approach.

Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations

  • Tufekci, Ekrem;Arpaci, Alaeddin
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.131-150
    • /
    • 2006
  • Exact analytical solutions for in-plane static problems of planar curved beams with variable curvatures and variable cross-sections are derived by using the initial value method. The governing equations include the axial extension and shear deformation effects. The fundamental matrix required by the initial value method is obtained analytically. Then, the displacements, slopes and stress resultants are found analytically along the beam axis by using the fundamental matrix. The results are given in analytical forms. In order to show the advantages of the method, some examples are solved and the results are compared with the existing results in the literature. One of the advantages of the proposed method is that the high degree of statically indeterminacy adds no extra difficulty to the solution. For some examples, the deformed shape along the beam axis is determined and plotted and also the slope and stress resultants are given in tables.

The Analytical Transfer Matrix Method Combined with Supersymmetry: Coulomb Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.408-412
    • /
    • 2007
  • Combining the analytical transfer matrix method with supersymmetry algebra, a new quantization condition is suggested. To demonstrate the efficiency of the new quantization condition, the eigenenergies of the Coulomb potential are analytically derived. The scattering-led phase shifts are also determined and they are the same for all Coulomb potential states. It is found that the new quantization condition is mathematically simple and exact.

Vibration analysis of rotating beam with variable cross section using Riccati transfer matrix method

  • Feyzollahzadeh, Mahdi;Bamdad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.199-207
    • /
    • 2019
  • In this paper, a semi-analytical method will be discussed for free vibration analysis of rotating beams with variable cross sectional area. For this purpose, the rotating beam is discretized through applying the transfer matrix method and assumed the axial force is constant for each element. Then, the transfer matrix is derived based on Euler-Bernoulli's beam differential equation and applying boundary conditions. In the following, the frequencies of the rotating beam with constant and variable cross sections are determined using the transfer matrix method in several case studies. In order to eliminate numerical difficulties in the transfer matrix method, the Riccati transfer matrix is employed for high rotation speed and high modes. The results are compared with the results of the finite elements method and Rayleigh-Ritz method which show good agreement in spite of low computational cost.

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

유도결합 플라즈마 발광분광기의 매트릭스 보정법에 의한 구리 중납, 카드뮴 및 크롬 분석에 관한 연구 (The Study on Analytical Method of Lead, Cadmium and Chromium in Copper Metal by Matrix Matching Method of Inductively Coupled Plasma Atomic Emission Spectrometer)

  • 주성균;김준;정남용;임규철;최영환;김상경
    • 대한화학회지
    • /
    • 제53권3호
    • /
    • pp.293-301
    • /
    • 2009
  • 일정 농도의 Pb, Cd 및 Cr이 첨가된 합성 Cu표준시료용액 (RMs)을 ICP로 여러 파장에서 Cu매트릭스 미 보정 검정곡선에 준하여 분석한 결과 모든 원소가 전 파장에서 Cu매트릭스의 영향을 받아 정확도 (Pb 140$\sim$1 090%)가 떨어졌다. Pb, Cd 및 Cr의 각각 일정 농도에 Cu의 농도를 변화시켜 분석한 결과 Cu 0.05 wt/v % (0.05 g/100 mL) 이상을 함유하면 실제 Pb, Cd 및 Cr이 첨가된 농도보다 Cu의 농도가 증가함에 따라 일정함수의 비로 감소하거나 증가하여 Cu매트릭스의 영향이 심함을 볼 수 있었다. Cu매트릭스 보정법에 의한 합성 Cu표준시료용액 (RMs)을 분석한 결과 99.9% 이상의 정확도를 보여주었다.